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ABSTRACT: We present a complete processing line to enhance large Remote Sensing (RS) image 
databases in the framework of real-time 3D rendering. RS and Virtual Reality communities are faced to 
several challenges to deal in real-time with large image datasets while preserving high quality and realistic 
rendering. There is an increasing interest of InSAR (Interferometric Synthetic Aperture Radar) data, due to 
principally with the availability of a near global coverage of HR DEM with the Shuttle Radar Topography 
Mission (SRTM). Important improvements of DEM are needed to provide more realistic visualizations. 
DEM pre-processing are performed by exploiting only the couple of data required for 3D visualization. A 
non stationary bayesian filter is presented to remove noise and small artifacts which pervade the InSAR 
DEM while preserving structural information. To produce more realistic rendering, information from 
optical images are fused in the DEM data. An object based description of large optical Remote Sensing 
(RS) images is obtained in two stages. (i) The optical image is segmented to simplify the amount of data. 
(ii) A novel dynamical algorithm is proposed to extract the regions and geometry which are stored in a tree 
structure that defines spatial relationships between regions (e.g. adjacencies, inclusions). An interactive 
object selection procedure links the extracted objects to their elevation modeling. The objects 3D structure 
is estimated from the DEM data using its planimetric shape extracted from the optical image and the 
elevation modeling assigned. The proposed object line processing provides more realistic 3D visualizations.
 

1 INTRODUCTION 

Land cover mapping is realized using the synergy between RS data types: DEM provides a basic spatial 
reference system and image data can be draped over the DEM for more advanced analyses. Up to now, the 
exploitation of large and complex RS databases in the overall interactive 3D visualization process is 
extremely difficult. The demand for such technologies leads to a reinforcement of world acquisition programs 
(SRTM, largest homogenous coverage acquisition) and tools to fully exploit such datasets. In [1] an efficient 
real-time rendering algorithm is proposed. In addition to the rendering time constraints, realistic 
visualizations require significant DEM enhancement and regularization since it brings the geometry 
information. 
In order to generate more realistic 3D rendering of RS data, several methods to enhance DEM are proposed 
(Fig. 1) [2]. Based on DEM data, a filtering (i) is applied. To gather complementary information for DEM 
regularization, an object based description of large optical images is developed (Fig. 2). It consists of two 
sequential and independent stages; (ii) segmenting large images; (iii) generating dynamically an object-
oriented image description that reflects both geometry of the extracted objects and their topological relations 
(adjacencies, inclusions). A merging algorithm (iv) is proposed to fuse image-object in the DEM data. 
To filter DEM (i), the efficiency of classical methods [3], [4] generally used for SAR despeckling is limited by 
an incomplete noise modeling. Multi-resolution filtering approaches [5], [6] lead to poor realistic visualization 
due to the generation of shrinkage artifacts traduced by unnatural aspects [7]. In [8], [9], a Bayesian filter has 
been developed to deal with non-stationary data such as InSAR DEM. By using Gauss Markov Random Fields 
(GMRF) models it attempts to remove thermal and coherent noises while preserving structural information. 



 
Fig. 1: System flowchart. 

Segmentation processes (ii) aim to subdivide the image into disjoint regions characterized by similar 
properties. In [10], a wide review of image segmentation techniques is presented. Region-based methods 
exploit directly spatial information in order to group homogenous pixels into closed and connected regions. 
Both methods; Bayesian [11], MeanShift [12], region growing [13], Minimum Description Length [14] or 
Morphological are providing satisfactory results for a given purpose. In order to deal with regions expressed 
as objects, their respective geometry and topological properties need to be extracted. 
To achieve topology descriptions, various discrete spatial models are proposed [15], [16]. The complex cellular 
approach [15] is particularly well suited since it turns out the connectivity paradox and topological problems 
with Z² (i.e. with discrete grid). The plane (R²) is decomposed in regular complex cells, which replace the pixel 
model (Z²). A discrete model is generated that preserves the topology of R² in a similar way as manipulating 
vectors models. Based on this modeling, geometry and adjacency relations of the regions can be expressed. We 
propose to complete the object representation by investigating the inclusion relationships between regions [17]. 
A tree structure is presented to store the regions and reflects their topological properties. 
In [18], [19], DEM regularization approaches (iv) have been proposed. Landscape cover types are extracted 
from existing Geographic Information System (GIS) databases and formulated as elevation constraints. In this 
paper, only the visualization dataset (optical image and DEM) is used; Regions are extracted from the optical 
image (texture) and linked to their thematic representation by an interactive object selection procedure (i.e. to 
include human knowledge in the system). The selected information in form of objects is merged with the 
filtered DEM by assigning elevation constraints. A Least Square Problem is formulated to optimize the 
adjustment and completed by morphologic operations. 
This paper is organized as follows. In section 2, an InSAR DEM filter is presented. A segmentation algorithm 
for optical images is presented in section 3. Section 4 describes the structure of the dynamical object 
database. A DEM regularization process is proposed and illustrated by examples in section 5. 

 
Fig. 2: Flowchart of the object/region extraction algorithm: Starting from large RS image (pixel-oriented), two independent 
processes are designed to achieve an object oriented description of the image. 

 
2 INSAR DEM FILTERING 
 
The formerly most used method to produce elevation data consists in the interpolation of topographic 
digitized level curves [20]. The resulting information obtained (Digital Terrain Model) is characterized by 
smooth aspect, interpolation artifacts and differs from RS DEM. It contains only the terrain elevation 
information, while vegetative, urban elevations are not included. Indeed, for 3D visualization, such data are 
not efficient enough to reach the level of realism required by users. References [21], [22] give further details 
related on RS elevation data. 



 
Fig. 3: InSAR X-SRTM DEM characteristics on smooth (a-c, f) and mountain (d, e) areas. Information content: Forest (1), 
valleys (2), large buildings, bridges. Noise and artifacts: Thermal and coherent noise (4), Phase Unwrapping artifacts (5), 
specular reflection on the lake surface (6). DEM filtering: (c) input raw data, (f) corresponding filtered DEM. 
Fig. 3 presents the X-SRTM DEM data, generated by using an X-band single pass sensor on board of the 
Space Shuttle. InSAR DEMs contain, according to the acquisition process (resolution, sensor frequencies), at 
least partially some objects; “forest”, “buildings”, “sea”, etc. Geometric displacements, artifacts, shadowed 
areas and inversions can occur depending on the acquisition conditions and the relief [23]. Both are 
characterized by an excessive roughness (too high fractal dimension / local variance). An essential issue is to 
remove the noises (thermal and low coherence) which pervade InSAR DEM. Land-covers have a direct 
influence (specular reflections on flat surfaces such as lakes, Fig. 3d-e). 
A Bayesian filter has been developed to deal with non-stationary data such as InSAR DEM [8], [9]. It attempts 
to remove noise (assumption of uncorrelated and additive noise) from the InSAR DEM data while preserving 
structural information. Assuming the noise and SAR model formation, the process of filtering is considered as an 
ill-posed inverse problem, and formulated in the general frame of Bayesian inference in two levels: 
• Model fitting: To filter the data, Maximum A Posteriori (MAP) method with a Gaussian distribution for 

the likelihood and GMRF models employed as prior. 
• Model selection: Evidence Maximization computed for a library of models centered on a guess of the 

parameter to be estimated. 
Given a noisy information y; estimates the most probable realization x, where θ is a vector parameter 
describing the neighborhood pixel relations. To filter the image y, a MAP estimation of the data is used 
choosing different prior models (maximization of the numerator in (1)). Indeed, in the first level of inference, 
the evidence is omitted (normalization term). To represent the prior model, which comes in the form of a 
texture model, GMRF models [8] are used (2) with xη, the neighborhood system. 
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For analytical tractability, we use a library of models and perform a model selection (second level of 
inference) in order to get the model that best describes the data through the evidence calculation. Fig. 3f 
illustrates the non-stationary filtering performed on the raw SRTM DEM (Fig. 3c). The noise parameter 
estimation is efficient due to the complete and non-stationary noise modeling. The global aspect of the DEM 
is more realistic. A comparison with other well-known filters is presented in [7] and illustrates the efficiency 
of the presented DEM filter. Suitable results (in terms of statistical analyses and rendering aspects) are 
obtained, nevertheless large artifacts remained. In order to significantly enhance the DEM to produce more 
realistic flight simulations, complementary information have to be gathered from the optical image (Fig. 2). 



 
Fig. 4: Image segmentation applied to SPOT5 “Supermode” color image, 2.5m resolution. {Respectively} Left: test site of 
{Nice, Toulouse} (France), tile of {1024, 512}-pixel square. Right: segmented image obtained for {1500, 1300} regions. 

3 SEGMENTATION 
 
A recursive region growing algorithm [13] is used to partition the image g into n disjoint regions Ri (3), where Ω 
is the image domain. The algorithm is based on the minimization of the simplest case Mumford and Shah 
functional and modeled by an energy functional E(u, K) (4). u is the piecewise constant approximation of g and 
K denotes its dual, the boundary set. The boundary density (|K| is the total length of K) is controlled by the scale 
parameter λ; the larger λ, the coarser the segmentation. 
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The algorithm is looking for a global energy reduction; the pair of adjacent regions {Ri, Rj } which provides the 
biggest energy decrease (smallest merging cost λij (5)) is merged and the shared boundary δRij is deleted. 
Starting from a regular grid of regions where each pixel is a region, the merging process is iteratively repeated 
until n regions remains. A finer-segmented result (n large) is preferred to a coarser one, since it is possible to 
refine the region merging after the topology analysis process. 
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As shown in Fig. 4, results obtained are promising. Some drawbacks remain: the algorithm depends on the 
intensity scale (quadratic term that controls the region homogeneity (4)) and the memory requirements are 
extremely important due to the regular grid initialization. To handle large datasets segmentation, the input image 
is tiled and a two-pass segmentation process is applied (Fig. 2). To distribute efficiently n regions among all the 
tiles, a complete segmentation is done to extract the evolution curve ftile i(λ) = ntile i for every tile i. λ is estimated 
among all the segmentation evolution curves to get the best region density ntile i regarding the overall number of 
regions n. Assuming an estimated number of regions ntile i for each tile, a second pass segmentation is applied. 
The process is completed by the topology algorithm to handle border regularization between tiles. 
 
 
4 GEOMETRY AND TOPOLOGY EXTRACTION 
 
The segmentation algorithm generates a partition Ωw,h of the image in disjoint regions (w, h denote the image 
size). Geometry and adjacency relations could be directly extracted during the segmentation process. A 
sequential approach presents the advantage to be independent from the segmentation method used. Using the 
complex cellular modeling [15], Ωw,h is expressed by an inter-pixel representation Ω´w+1,h+1 composed of Nodes 
N (0-cells), Boundaries B (set of connected 1-cells). Using the set of nodes and boundaries extracted, Borders 
CB (closed set of connected boundaries) are constructed to represent the Regions R (2-cells). These definitions 
are illustrated in Fig. 5 and follows (6) - (15) with (i, j, k, l) ∈ Z4. The resulting algorithm extracts and stores 
dynamically the various objects (0-1 cells) in a database D that contains both geometry and adjacency relations. 
The region modeling is achieved by collecting structural elements from D. A tree structure is designed to store 
the regions and reflects their topological properties. 
 

4.1 Topology: 4 connectivity neighborhood 

• Nodes N ∈ Z² (Ω´w+1,h+1). Using the inter-pixel representation, a node N (6) is the extremity of at least one 
boundary (closed boundary) or maximum four (Fig. 5b). 



 

(a) (d) 

(b) 

 
(c) (e) (f) 

Fig. 5: Inter-pixel representation: (a) Object modeling. (b) Geometry: Freeman code (direction T, 1st left): For a given 
region Ri and an initial direction TE, 3 direction cases. (c) Object generation process; Border CBi (external border associated 
to the region Ri). Topology process: (d) Merging algorithm. (e) Shape extraction. (f) Tree structure. 

• Boundary: B delimits two adjacent regions Rright, Rleft and is oriented (9) (two nodes Nbegin, Nend). The 
boundary shape from Nbegin to Nend is described by a Freeman code (8) using k pairs {L, T}, where L denotes the 
number of 1-cells in a given tracking direction T (Fig. 5b). |B| denotes the area underneath the boundary (7). 
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• Border: CBi is a closed and oriented chain of connected boundaries: For each boundary Bj which belong to 
CBi, a direction δj is associated (10) using (9). CBi delimitates Ri from its external neighborhood regions (10)-(12) 
as shown in Fig. 5a. The interior region Ri´ (11) is the entire area within CBi. Since the chain is oriented in the 
clockwise turn, the area underneath the border |CBi| is strictly positive (13). 
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• Region: A region Ri (1) is defined by one external border CBi and a collection of internal disjointed borders { 
CBj } (14). Such modeling enables to investigate inclusion relationships between the regions. If a group of 
adjacent regions {Ra} may constitute a “hole”, a new border is created using the set of boundaries to represent the 
convex hull of { Ra }. It’s corresponding region is a dummy region (Fig. 5f, R7+8). 
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4.2 Tree of regions 

A root tree structure is designed to store in a simple and “natural” way the regions according to their topology, but 
also to speed up data access. Nodes of the tree are regions and branches are reflecting the inclusion relationships 
between the regions. The root denotes the border of the processed image (Fig. 5f). It can be seen as an empty 



region that covers the whole image where all the regions are included. In the tree construction, the “directed” 
notion is added. In a rooted directed tree, from a given region stored in the tree, there is only one path to the root. 
Given this directed notion of a rooted tree, a rooted sub-tree can be defined for each node of the tree. Hence, for 
each region which contains included regions, a sub-tree is recursively generated. 
In the tree structure, the level order corresponds to the vertical distance from the root (order0) (Fig. 5f). For a 
given sub-tree of the region Ri (orderk), the direct children (orderk+1) are siblings and have a unique parent Ri 
(15). In this case, Ri´ is placed as first child of Ri as shown in Fig. 3d (regions R2 ´, R4 ´, R6 ´).The tree is directly 
reflecting the region relationships. For each region stored, we can directly access to the included/parent regions, 
(i.e. vertical navigation in the tree), or adjacent regions (horizontal navigation). Once the tree structure is stored, 
further complementary editing or modifications are possible in order to merge regions with spatial relationships. 
 
4.3 Algorithm flowchart 

The sequential process is described in three steps as shown in Fig. 5d-f: 
• Step 1: A merging growing algorithm is performed in the segmented image Ωw,h, to retrieve and index the 
regions (Fig. 5a). At the same time, an inter-pixel boundaries map Ω´w+1,h+1 is generated as shown in Fig. 5e. 
• Step 2: According to the defined equations (6) - (13), the geometry (Fig. 5d) and the adjacency relations (Fig. 
5a) are extracted for each region detected during the Step 1 by using both Ω´w+1,h+1 and the indexed image. 
Nodes, boundaries, borders are dynamically extracted from Ω´w+1,h+1 (Fig. 5c). The indexed image is used to 
retrieve neighbor’s relations, carried by the boundary elements. Objects uniqueness has to be preserved and the 
extracted borders have to be oriented in the clockwise turn (|CB|>0). Both processes are controlled by the database 
D which ingest or not the proposed extracted objects (6) - (13). At this level, {N}, {B}, {CB} are stored in D. 
• Step 3: By analyzing topology relations (10) - (11), the regions are recursively created (14) and stored (15) in 
the tree structure (Fig. 5f.). Since every border CBi is associated to a region Ri, starting from an image corner, 
region inclusions are recursively deduced and propagated to the whole segmented image by adjacencies relations. 
The described algorithm allows building efficiently tree structures from segmented images without any 
parameters. It enables to deal directly with object oriented information. An order of computation time for the 
whole process on a standard PC (3 GHz, 1 Gb RAM) is 70 minutes for a 6144x6144 pixels RGB image. 
 
 
5 DATA MERGING 
 
DEM artifacts mainly lead to unrealistic views: In Fig. 3d, the lake should be a flat surface with an elevation 
lower than all its adjacent objects. The results achieved by object processing chain allow delimiting the 2D 
structure of the object to be regularized in the DEM. Registration errors between image and DEM are not taken 
into account. It remains to estimate the elevation surface of the object that depends on: 
• DEM information, 
• object shape and thematic, elevation modeling, 
• neighboring relations 

Constraints and Modeling Thematics 
Internal (border elevation HOBJ) Neighbors (Hneigh) 

Sea, Lake, Canal Hobj<Hneigh

Large building roof Hobj>Hneigh

Airport, Parking, Football ground 
Horizontal surface 

- 
Bridge, dam  Hobj>Hneigh

Street, Motorway - 
River Tiled surface (small slope) Hobj<Hneigh

Building, House 2 adjacent tiled surfaces (sym. slope) Hobj>Hneigh

Forest - Hobj>Hneigh

Table I: Elevation constraints 

Table I summarizes some of the objects which can be observed in RS images (medium to high resolution) and 
the constraints to be applied for the DEM regularization. Two types of constraints are modeled (internal / 
external). The first constraints are inferred by the object itself, whereas the others are related to the 
neighboring objects. In order to be able to apply these constraints on the DEM, the objects are labeled (e.g. 



user interests, such as “forest”, “bridge”, “road”, etc.). To achieve the landscape recognition, an interactive 
object selection is achieved by the user as shown in Fig. 6b; it enables to link the regions to their user-defined 
cover types. Objects are selected through a Graphical User Interface (GUI) and classified according to their 
thematic coverage defined in Table I. The user’s “knowledge” as well as his specific interests is incorporated 
in a convenient way. From each studied thematic, a set of regions is extracted. Among them, adjacent or 
included regions are merged together by updating the tree structure. Interactively, the user refines the object 
selection until satisfactory cover type assignations are obtained. 
The DEM regularization process is achieved in two stages; (i) to estimate the surface elevation, (ii) to control the 
transition, the shapes of the inserted objects. The object elevation models used are either horizontal or tiled (16) 
surfaces according to the defined thematic (Table I). 
A least square problem is formulated to estimate the elevation surface of each object selected. DEM information 
are collected and classified in two categories (included Hint or excluded Hext on the objects). Since elevation and 
image data may have different resolutions, the least square adjustment is applied on the DEM grid. Neighboring 
constraints are formulated through slope estimation dsthematic j for each adjacent thematic j between the interior and 
exterior observations (17). The elevation surface estimated is adjusted to respect the external constraints (Table I) 
carried by all the estimated dsthematic j. Results are integrated in the DEM. The enhanced DEM is interpolated to 
match the image resolution. Finally, morphologic operators (dilation-erosion) are used to control the transitions 
and shapes in the border of the inserted objects, depending of the thematic of their adjacent objects. 

Xi = (xi, yi, Hi), a xi + b yi + c Hi +d = 0 (16) 

dsthematic j = 
intext

intjext

d
HH

−

−
 (17) 

The enhancement obtained is presented in Fig. 6. Experiments have been done for tiled and horizontal surfaces 
such as “river”, “lake”, “airport”, “forest”, “sea”, “building” in a dataset composed of a SPOT 5 “Supermode” 
color image (resolution: 2.5m) and a X-band SRTM DEM (~22m). The object integration in the DEM is 
emphasized by Fig. 6. 3D rendering enhancements are presented in Fig. 6e and Fig. 6f, using respectively the 
filtered DEM and the regularized DEM. Thanks to the presented object line processing, significant improvements 
are achieved and more realistic 3D visualizations are obtained. Similarly, instead to estimate the surface of the 
objects, the integration of image-objects in the DEM can be realized to remove and clean the DEM from the 
contribution gathered by several thematic areas such as “forest”, “tree”, “building”, “car”, etc. This processing is 
determinant to optimally insert 3D synthetic objects coming from computer graphics or GIS databases. 

 
Fig. 6: Merging image-object in the DEM: Test site of Nice (France) with a SPOT5 “Supermode” image and X-SRTM 
DEM. (a) optical image, (b): user selection through GUI for the following thematic; “large buildings” (yellow), “river” (dark 
blue), “sea” (light blue), “forest” (green), “airport” (white). (c)-(d): DEM improvements (slope visualization); (c) filtered 
DEM, (d) regularized DEM. (e)-(f): Perspective views with the filtered DEM (e) and with the regularized DEM (f). 



6 CONCLUSION 
 
Potential of SAR data to provide elevation data for ambitious and large virtual reality purposes is emphasized. To 
enhance and regularize the DEM data, a processing chain has been presented. These pre-processing steps are 
essential in order to generate a higher level of realism and to simplify the data for 3D rendering processes (meshes 
simplification, hierarchical decomposition, etc.). Such systems constitute a key step for realistic 3D visualizations 
of EO data. Thanks to the tree structure and the region growing algorithm, the processing line presented appears 
to be very efficient. The topology process does not require assumptions on the segmentation algorithm used. 
Topological and Geometric properties are directly encoded in the tree structure and provide coupled with the 
complex cellular approach a consistent and “natural” region description. The modeling of the tree structure and 
the information gathered by the topology analysis can be applied for other applications or fields such as pattern 
recognition, clustering, queries by content, etc. 
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