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ABSTRACT 
This paper introduces an automated spectral unmixing approach. This approach is based on multi-
ple endmember spectral mixture analysis (MESMA) where the mixture model is iteratively im-
proved using residual analysis and knowledge-based feature identification. A combined criterion 
for model selection and criteria to detect errors in the mixture model itself are also discussed, as 
well as methods to include neighbourhood information in the unmixing process. Examples for an 
evaluation methodology based on scene simulations and HyMap imagery from Spain and Namibia 
are given. 

INTRODUCTION 
Semi-arid and dry sub-humid ecosystems have been under ecological pressure since historical 
times. Especially during the last decades, human activities endanger the biological and economic 
productivity of drylands, observable by processes like soil erosion and long-term loss of vegetation. 
To identify these changes and the underlying driving processes, it is essential to monitor the cur-
rent state of the environment and to include this information in land degradation models. The 
ground cover fraction is a frequently used parameter in such models (e.g. i), since the cover type 
(bare soil or plants), the degree (sparse vs. dense canopies) and the spatial distribution pattern 
alter surface runoff and thus the erosion potential. When plant cover is low, the observed signal 
from remote sensing systems can be greatly influenced by dry vegetation, variable soil brightness, 
biological surface crusts (especially lichens) and litter. Thus simple ratios like NDVI are of limited 
value in order to estimate ground cover fractions. To overcome the limitations, an approach based 
on the linear mixture model was successfully applied in a large number of studies (an introduction 
to spectral unmixing and a list of previous studies can be found in ii). Based on the physical rela-
tionship between subpixel constituents and sensed signal, the proportion of a material in the signal 
sensed is assumed to be equal to the actual ground cover fraction of this material in the area ob-
served, thus surface fractions can be quantitatively derived. In a strict sense, this is only valid for 
the assumption that a photon interacts with only one ground cover type, i.e. all non-linear effects 
like multiple scattering in plant canopies are neglected. Nevertheless, as many plants in semi-arid 
regions are adapted to the harsh environment by thick leaves or wax coating having only little 
transmittance, and since lichens also show low transmittance, the linear mixture model is a valid 
working hypothesis. 

Since plant species and soil types are normally inconstant in one scene, it is unlikely that only one 
green and dry vegetation and one soil component can adequately represent the spectral variability 
of its ground cover class and thus model the entire image. One way to handle with the variety of 
possible scene components is to include all possible EM in one mixture model. But this often re-
sults in wrong abundances because the problem with linear dependent EMs is enhanced. Next, 
even though the linear mixture model can be solved as long as the number of EMs is less than the 
number of bands plus one, the intrinsic dimensionality of hyperspectral data is smaller due to the 
high degree of correlation between bands, preventing comprehensive sets of EMs.  

A better approach is to optimize the EM set for each pixel independently. Recent examples for 
these multiple endmember spectral mixture analysis (MESMA) approaches and applications for 
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semi-arid and arid environments can be found in (iii) for the mapping of chaparral, in (iv) where it 
was found that cover fractions could be reliably determined, but problems arose for the identifica-
tion of vegetation type, and (v) who applied a Monte Carlo unmixing only using the SWIR2 region 
for the mapping of desertification. In the following, a new iterative MESMA approach is outlined 
(also described in vi).   

METHOD 

While most MESMA approaches mainly optimize for total root mean square (RMS) error and 
abundance constraints, the present approach also aims to identify which mixture model is mean-
ingful in terms of absorption features of the spectra. Examples are chlorophyll absorption, clay-OH-
absorption, and ligno-cellulose absorption among others. After the first unmixing iteration with an 
initial EM set, the measured spectrum and the residual (i.e. the difference between the measured 
and the modelled spectra of a pixel) are checked for significant features. If this divergence is char-
acteristic it can then be identified. For example, when an underestimation of iron in a soil appears, 
the mixture model for this pixel is adjusted, i.e. a soil with higher iron content is used to model the 
pixel in the next unmixing iteration. The spectral identification is accomplished using correlation 
and specified narrow-band features similar to Tetracorder (vii) and includs the shape of the spec-
trum. The model selection criterion is thus based on a combined error score of wavelength-
weighted RMS, deviation from constraints, and knowledge-based analysis of features in the resid-
uum and signal sensed. This model selection criterion is further used as a feasibility measure, 
which also includes the local incidence angle among other parameters. 

As a step towards automation, the EM used for unmixing are selected from a spectral library of 
image-derived EM from existing HyMap imagery at DLR. Based on a large number of scenes from 
dry-subhumid and semi-arid regions, spectra are selected for the relevant material groups of pho-
tosynthetic active vegetation, non-photosynthetic active vegetation (NPV, which includes dry, se-
nescent and dead plants), and bare soils and rocks. All other material groups are not of interest in 
this study and thus excluded. 

After the first unmixing iteration, pixels with high error score are determined and tested if these 
spectra may represent EMs not included in the starting library. This approach known as Iterative 
Error Analysis (IEA, viii) was originally intended for automated unmixing without knowledge of any 
EM, but is used here in a slightly different way, i.e. to add scene-specific EM to a given generalized 
EM library. In the present approach, this step is not yet fully implemented, but a brief outline is 
given below. The classification to one of the relevant material groups (i.e. green vegetation, non-
photosynthetic vegetation, and bare soil) is based on spectral similarity measures like SAM, corre-
lation, and knowledge-based spectral feature identification. If a spectrum can not be surely identi-
fied or shows features of more than one class, it is discarded from further processing. Next, the 
potentially new EM is tested for linear dependency with existing EM, and checked if it extends the 
EM library. The latter can be achieved by using the methodology described in (ix). Currently, a 
manual evaluation of the proposed new EM is still necessary to ensure the pureness of EMs. 

Another improvement of MESMA unmixing is based on the fact that in nature, small-scaled 
changes of soil type rarely occur. Although when using MESMA without normalisation or shade 
component, the soil EM is often affected by changes in overall albedo. This results in a small-
scaled mosaic of different soil EMs (Fig. 1). Therefore, it is checked if a pixel can be modelled with 
the dominant soil EM in the neighbourhood without increasing the error score too much, resulting 
in less patches and more realistic EM abundances (Fig. 1 & 2). 

468



© EARSeL and Warsaw University, Warsaw 2005. Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy. New quality in environmental studies. 
Zagajewski B., Sobczak M., Wrzesień M., (eds)  

 

Figure 1: Maps of soil EM used for unmixing. Left: without / Right: with neighbourhood iteration.  

 
Figure 2: Unmixing RMS with and without neighbourhood iteration 

RESULTS AND CONCLUSIONS 
As shown by previous studies (iii, iv, v among others), MESMA can model hyperspectral imagery 
with a significantly smaller RMS than normal unmixing (Fig. 3 and 4), but further steps are required 
to ensure that results are correct.  

 
Figure 3: Unmixing RMS for HyMap scene Cabo de Gata (subset) Left: standard unmxing using 3 
EM. Right: MESMA optimized for RMS. Note the area in the northwest with calcareous soils, which 
can not be modelled with standard unmixing when the fixed soil EM represents the  
low-calcareous soils in the southern parts of the image. 
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Figure 4: Total RMS error for HyMap scene Cabo de Gata when using standard unmixing (denoted 
3EM), MESMA with optimization for total RMS (RMS_tot) and when using a combined optimization 
criterion (CombCrit) 

Some criteria for unmixing fidelity are inherent in the unmixing model itself. First of all, the residual 
(i.e. the part of the signal which can not be modelled) should not contain meaningful information. If 
the residual spectrum can be interpreted, e.g. when absorption features are still present, a better 
model for this pixel can be found. Next, if the selected EMs are linearly dependent, unmixing re-
sults are likely to be false. Another indicator for an incorrect mixture model is the deviation from the 
constraints, i.e. when abundances greater than 100% or less than zero occur or when they don’t 
sum to 100%, but this also depends on the algorithm used. Finally, when including a shade com-
ponent, shade abundances should mainly represent illumination conditions and, to a lesser de-
gree, canopy shade effects. If this is not the case, the shade component is also used to reduce 
errors for incorrect set EMs. In reality, it is impossible to fulfil all these criteria, but they can be used 
to determine a correct mixture model, and may be used as a feasibility measure for unmixing qual-
ity.  

Next, simulations are used to fine-tune and to evaluate the unmixing methodology. Based on field 
spectroscopic measurements, the linear mixture model is used to generate synthetic scenes (de-
scribed in e.g. iv, x). During the Cabo de Gata field campaigns in close cooperation with GFZ and 
local project partners (see xi and vi for more details), and during fieldwork by DLR-DFD in the 
framework of the BIOTA South project in Namibia, comprehensive field spectroscopic measure-
ments were taken. Using these pure spectra of various plants and soils, a large number of syn-
thetic scenes are generated as “perfect” reference. An illustration of a synthetic scene is shown in 
Fig. 5. 

 
Figure 5: Illustration of synthetic scenes. Left: Input spectra of pure materials. Center: Synthetic 
image based on linear mixture of the input spectra. Right: Example for simulated mixed spectra. 

In Fig. 6, scene simulations based on field spectral measurements of Spain and Namibia are 
shown. Using image-derived EM from the HyMap imagery of Cabo de Gata for unmixing, errors 
are normally well within 10% abundance except for low coverage (Fig. 6 left). In case that no suit-
able EM is included in the library, errors may raise significantly, as depicted in the right part of Fig. 
6, indicating the need to extend the EM library used in the presented simulation. 
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Figure 6: Statistics of unmixed synthetic scenes. Left: Reference vs. estimated abundances for 
green vegetation. Right: Plot of unmixing errors per model for green vegetation (subset). 

Another common error in MESMA is caused by the selection of a wrong EM, also depicted in Fig. 
7. While one spectrum for each ground cover class is used for the scene simulation, 3 different soil 
EMs are used for unmixing, in addition to one green vegetation EM and one NPV EM. This results 
in wrong abundances even though the EM model with the smallest RMS is selected. To cope with 
this source of error, knowledge-based residual analysis is used to select meaningful EMs in terms 
of spectral absorption features, and the inclusion of a feasibility measure indicates pixels with low 
model accuracy.  

 
Figure 7: Illustration of MESMA errors based on scene simulation (optimized for RMS). Left: Abun-
dances for green vegetation. Right: Soil EM used in the unmixing model. 

OUTLOOK 
As a next step, this MESMA approach is currently evaluated on HyMap imagery (Fig. 3 & 8). For 
the main testsite Cabo de Gata in southeast Spain, a total of 16 HyMap flightlines was acquired at 
different phenological states and years, and at different flight altitudes and flight orientations. Thus 
the influence of scale and bidirectional reflectance distribution function (BRDF) can be assessed, 
and ground measurements can be used for evaluation. In addition, HyMap overflights for the 
BIOTA testsites in Namibia will be included in the evaluation in order to test the portability of the 
approach. Using this atmospheric and geometric corrected imagery and corresponding ground 
truth data, the proposed unmixing methodology will be further evaluated. 
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Figure 8: Abundance maps for the BIOTA Ovitoto test site in Namibia. Original HyMap data de-
picted on left. 
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