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ABSTRACT 
For efficient grassland management, information on the spatial variation of the crop within fields is 
of the utmost importance. Currently, this mainly depends on qualitative expert knowledge. 
Quantitative information on the actual status of grass swards at the right moment in the season is 
important for management decisions, like nitrogen supply, water supply or harvesting.  

Remote sensing has proven to be a useful technique for estimating and mapping the spatial 
variation of various biophysical variables. A whole range of vegetation indices has been developed 
for estimating variables like biomass, leaf area index and the fraction of absorbed 
photosynthetically active radiation for a range of vegetation types. However, calibration of the 
image data is crucial in the performance and applicability of this technique. 

The aim of this paper is to show the possibility to calibrate image data using fast non-destructive 
close-range sensing instruments, hence being able to build models to assess important plant 
characteristics on large areas.  

A homogeneously managed grassland field of about one hectare was used as a test site. It was 
subdivided into 20 plots of 15 by 3 meters. End of July 2004 measurements were performed with a 
close-range sensing device, the so-called Imspector Mobile. This imaging platform consists of two 
imaging spectrographs, covering the spectral range of 440-960 (Imspector V9) and 850-1680 nm 
(Imspector N17), and a 3-CCD camera, equipped with special band filters (centre wavelengths are 
at 600, 710 and 800 nm). The platform is further equipped with artificial light sources.  

An airborne campaign with the UltraCam digital CCD camera (centre wavelength of the four bands 
are at 460, 520, 660 and 740 nm) was used for extrapolation to large scale areas.  

Plots were harvested and variables like fresh and dry biomass, and leaf nitrogen content were 
determined. 

Results showed that the Imspector Mobile could be used for estimating crop variables of the 
grassland field with a grass-clover mixture. Partial least squares (PLS) models combining spectral 
and spatial information from the Imspector Mobile yielded acceptable results in predicting crop 
variables. Subsequently, the predicted field variables were used to build a prediction model using 
the reflectance values of the UltraCam images. These were then compared with the measured field 
variables and the model proved to have acceptable predictive power. 

INTRODUCTION 
Energetically speaking, current agricultural cropping systems have a low efficiency. Under Dutch 
growing conditions - with highly developed agricultural practices – still no more than 1% of the 
energy of the sun reaching the earth surface is fixed in plant biomass (chemical energy in crops). 
The net yield of grassland is estimated at no more than 8.5 ton dry matter (DM) yield per hectare 
on average each year, whereas the potential gross yield with the same agricultural practices on 
experimental plots is estimated at 15 ton DM per ha per year. If we can lower this so-called 'yield 
gap', the same or more biomass can be produced on a smaller area. Since the area of grassland in 
the densely populated Netherlands is over 1 million ha, more efficient management lowering the 
yield gap is extremely useful. However, at this moment it is still not clear what causes this ‘yield 
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gap’. Insight in the causes is hampered by the lack of fast and accurate methods for determining 
crop growth. Various techniques, e.g. using imaging spectroscopy, are therefore developed for 
determining the causes of this yield gap. 

If we do know the causes, we can optimize current grassland management practices, using 
precision agriculture. Optimization refers to biomass production of high quality in order to maximize 
animal production. This requires the need to monitor the crop over large areas. To assess 
stagnation of growth and impending yield reduction at a large scale, the availability of fast, timely 
and accurate methods is called for. Furthermore, such methods can also be used for estimating 
the amount of nitrogen left in the soil, which could be re-used, hence minimizing environmental 
impacts associated with fertilization. The latter being of increasing concern [1]. 

The role of imaging spectroscopy for the characterisation of grass swards was studied by Schut [2-
6]. He explored the potential for growth monitoring, detection of nitrogen and drought stress, and 
assessment of dry matter yield, clover content, nutrient content, feeding value, sward 
heterogeneity and production capacity using a close-range imaging spectroscopy system 
applicable in the laboratory or for mini-experiments. From this a mobile system was developed for 
application to field experiments, the so-called Imspector Mobile [7]. This imaging platform consists 
of two imaging spectrometers, covering the spectral range of 440-960 (Imspector V9) and 850-
1680 nm (Imspector N17), and a 3-CCD camera, equipped with special band filters (centre 
wavelengths are at 600, 710 and 800 nm). The platform is further equipped with artificial light 
sources and thus can measure independently of external weather conditions. A combination of 
image parameters and hyperspectral reflectance curves derived from classified images can be 
used to estimate yields, nutrient contents and feeding value of grass plots [8]. 

Although the Imspector Mobile is a non destructive and relatively fast measurement device, it is not 
suitable for monitoring large areas of grassland.  

Remote sensing has proven to be a useful technique for estimating and mapping vegetation 
biophysical variables over large scale areas. Both statistical and physical methods have been used 
for describing the relationship between spectral measurements and biophysical variables. As an 
example, a whole range of vegetation indices has been developed for estimating variables like 
biomass, leaf area index and the fraction of absorbed photosynthetically active radiation for a 
range of vegetation types. For estimating leaf chlorophyll and nitrogen content imaging 
spectroscopy has shown promising results [9]. However, calibration of the image data is crucial in 
the performance and applicability of this technique. 

Therefore we try to combine the dedicated close-range sensing equipment with remote sensing 
techniques. By using the Imspector Mobile for calibrating the remote sensing data, we hope to be 
able to extrapolate the results to large areas of grassland. The idea is illustrated in figure 1. Beeri 
et al. [10] developed an alternative approach for using ground-truth models for sugar beet N-credit 
and tested these models with satellite images.  

 

 
 

Figure 1: Schematic representation: destructive and expensive measurements are used to 
calibrate the close-range sensing device. The close-range sensing device can then characterise 
the status of the crop at many locations, fast and non-destructively. These data can then be used 
to calibrate the remote sensing data. After calibration, these data can be used for extrapolation of 
these characteristics to larger areas. 
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The objective of this paper is first to test the potential of the close-range Imspector Mobile system 
for estimating crop variables of the grassland field with a grass-clover mixture. Therefore the 
features measured with this device will be used to build a model to predict the most important 
grassland characteristics. Subsequently, another model will be built using the reflectances derived 
from UltraCam digital camera images for spatially extrapolating the Imspector estimates. 

First we will describe the field experiment and the chemical analysis used in this study. Next we will 
describe the Imspector Mobile, and build a model to predict grassland characteristics. Finally, we 
will use the fitted values of the Imspector Mobile to build a model for the remote sensing data to 
extrapolate the results to large areas of grassland.  

MATERIAL AND METHODS 
Field experiment and chemical analysis 
Within field 1 of the Droevendaal experimental farm in Wageningen (the Netherlands), a total of 20 
plots were defined within a field with a mixture of grass and white clover. These plots were 15 m 
long and 3 m wide with a spacing of approximately 10 m between the plots. After recording the 
spectral reflectance with various instruments, plots were harvested with a Haldrup plot-harvester 
on 30 July 2004. The biomass was recorded with a built-in weighing unit on the Haldrup harvester. 
After cutting, a drill sample was taken from the harvested material. These samples were oven dried 
during 72 hours at 70oC. After drying, samples were ground and sieved. From this material, a sub-
sample was taken for wet-chemical analysis on total-N, P, K, Ca and Na content. Total-N and P 
was measured with the so-called Segmented Flow Analysis procedure, after destruction with H2O2, 
Se, H2SO4 and salisic acid. Contents of K, Ca and Na were measured using Flame-Atomic 
Emission Spectrometry. 

Imspector Mobile 
The plots in field 1 at Droevendaal were measured on 29 July 2004 with the Imspector Mobile 
(Figure 2). The Imspector Mobile has a GPS, a speedometer and three sensors on board 
consisting of a detector, filters or spectrograph, lens and an artificial xenon light source, which 
allows for nearly constant illumination over all recordings [7, 8].  

 

 
Figure 2: The Imspector Mobile. 
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The three sensors are: 

1. A 3CCD camera with 1024×1390 pixels and 3 narrow spectral bands at 600, 710 and 800 
nm recording the reflection of an area of 45×60 cm on the soil surface. Using image 
processing, the percentage of ground cover, an index of reflection intensity and the mean 
reflections of green pixels per band were calculated from the 3CCD images. Within an 
image, the standard deviation of ground coverage was calculated over sub-blocks of 5 cm2 

and 15 cm2. Two examples of typical pictures taken by this sensor are shown in Figure 3. 

2. A visible light imaging spectrograph (ImSpector V9). The V9 sensor records the reflection 
from 439-956 nm in 1090 spectral bands with 1300 pixels on the image-line. The recorded 
image line at the soil surface is approximately 1.39 mm wide and 152 mm long.  

3. A NIR imaging spectrograph (ImSpector N17). The N17 sensor records the reflection from 
848-1680 nm in 256 spectral bands with 320 pixels on the image-line. The recorded image 
line at the soil surface is approximately 1.39 mm wide and 133 mm long. 

 

  
Figure 3: Images 10 and 20 from the 3CCD sensor from plot 1. The 50%-grey Spectralon standard 
is present at the top and bottom in every recording.  

One image-line is taken such that it coincides with an image-line in the upper part of the 3CCD 
image, the other image-line coincides with an image-line in the lower part of the 3CCD image, both 
across the 50% reflecting Spectralon standards (see Figure 3). 

Images were recorded while driving with a velocity of 0.3-0.5 m/s. On each plot, 20-30 recordings 
were made with each sensor within a narrow strip of 60 cm wide in the middle of the plot.  

After recording, reflection was calculated using the Spectralon standard, available in every 
recording. The V9 and N17 images were warped to correct for bending in the spatial and spectral 
direction [11]. All measurements were geolocated using the on-board GPS system. 

Calculation of V9 and N17 explanatory variables for Imspector Mobile 

Pixel spectra in the V9 and N17 were normalized by dividing the spectrum by the mean reflection 
from 743-955 nm for the V9 sensor and from 1070-1130 nm for the N17 sensor. Pixels were 
assigned to the classes green material, dead material or soil using thresholding [8]. Spectra of 
green material within a plot were averaged to a single average spectrum per plot for V9 and N17. 
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Calculation of 3CCD explanatory variables for Imspector Mobile 

The 3CCD images were classified into separate pixels containing background material (soil, dead 
material) and green leaves. Ground coverage (GC) was calculated as the percentage of pixels 
classified as green material. The mean reflection in bands at 600 (R600), 710 (R710) and 800 nm 
(R800) were calculated for pixels classified as green material. 

As a result of system design, reflection intensity is a function of leaf height and leaf angle. Higher 
reflection intensities correspond with higher positions in the canopy and a more horizontal leaf 
orientation. Therefore, pixels in the class with green leaves were subdivided into 10 reflection 
intensity classes. The index of reflection intensity (IRI) is calculated as the percentage of pixels 
classified as green material that is present in the (intensity) classes with the highest reflection 
intensity [3] .  

Schut et al. [3]  used wavelet analyses and the spatial standard deviation to quantify heterogeneity, 
damage and productivity of grass swards. For the 3CCD images a similar approach was followed. 
The 3CCD images were subdivided into square blocks of 5 cm2 and 15 cm2. The (spatial) standard 
deviation of GC values (GC_SSD) was calculated as the standard deviation of the GC values per 
block. Transects of 210 adjacent pixels were defined in the row and column direction within the 
3CCD images. For each transect wavelet entropy and wavelet energy values were calculated [2]. 
Finally, mean values per image and per plot were calculated. Wavelet energy is a measure of the 
number of wavelet frequencies that are required to describe a certain pattern. Higher values for 
wavelet entropy correspond with grass dominated swards and low values correspond with swards 
dominated with species with larger leaves (e.g. clover). The wavelet energy corresponds with the 
amplitude of a certain pattern, in our case higher values coincide with more biomass accumulation. 
The clustering of green pixels with homogeneous colour characteristics was determined with image 
analyses procedures based on the principles of mathematic morphology. This procedure will result 
in a larger fraction of leaf clusters when swards are dominated by clover.  

UltraCam digital camera 
Vexcel’s UltraCam digital camera system delivers large format aerial imagery that is radiometrically 
and geometrically superior to images captured by conventional film cameras at a comparable price 
[12]. It features a better than 12-bit per pixel dynamic range, compared to film cameras at less than 
8-bits per pixel, and without any grain-noise. The UltraCam system comprises a panchromatic 
band and four multispectral bands (Table 1). On 28 July 2004 Aerodata performed a flight line 
across Wageningen with the UltraCam-D digital camera. The flight altitude was about 2790 m, 
resulting in a pixel size of 0.25 m for the panchromatic band and 0.78 m for the multispectral bands 
(blue, green, red and near-infrared). Aerodata provided all data in tiff-format, after performing a 
geometric correction for the internal camera geometry and a radiometric correction for vignetting 
and white balance. 

In total 21 images were recorded with an overlap of nearly 80%. The image size is given in Table 1 
in terms of pixels, which means that one image covers an area of about 2875 by 1875 m. The 
spectral sensitivity of the four spectral bands is depicted in Figure 4. 

 

 

 

 

 

 

 

 

763



© EARSeL and Warsaw University, Warsaw 2005. Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy. New quality in environmental studies.  
Zagajewski B., Sobczak M., Wrzesień M., (eds) 

  

Table 1: Specifications of the UltraCam digital camera [13]. 

Sensor type Area CCD 
Focal length (mm) 100 mm Panchromatic 

28 mm Multispectral 
Total field of view (o) 55 × 37 
Number of CCD lines/camera 9 
Panchromatic image size 11500 × 7500 pixels 
Multispectral image size 3680 × 2400 pixels 
Sensor size (µm) 9 
Radiometric resolution (bit) >12 
Spectral resolution (nm) 
  (Full Width Half Maximum) 

450 – 665 (Pan) 
420 – 475 (blue) 
455 – 580 (green) 
635 – 675 (red) 
700 – 805 (NIR) 

Georeferencing POS Z/I 510 navigation system with GPS and INS 

 

Figure 4: Spectral sensitivity of the four spectral bands of the UltraCam-D camera as used on 28 
July 2004. 
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Figure 5: Parts of a false colour composite image made with the UltraCam-D camera over the 
Wageningen site on 28 July 2004 (image lvl02-00234). Left: part of the area with five reference 
targets is shown; right: the grass/clover test site with the polygons showing the Imspector 
measurement sites.  

Figure 5 shows an example of parts of an Ultracam image over Droevendaal. Shadows of some 
cloud cover are present in the upper left corner of the image. Going further north along the flight 
line, the influence of cloud cover was becoming more severe. The UltraCam images were 
georeferenced to the Dutch national coordinate system (RD) using a basemap. A second order 
polynomial transformation yielded an overall rms-error of about 0.6 m using 97 ground control 
points. The pixel values of the UltraCam images can be converted to reflectance factors by using 
reference targets. A linear transformation can be used in order to correct for camera calibration 
and atmospheric effects [14]. The assumption is that effects (e.g., from the atmosphere) are the 
same for the targets and for the objects to be calibrated. Therefore, we suggest to do this 
calibration to ground reflectances only within one image if weather conditions are not optimal. 

Reference targets 
During the 2004 campaign reference targets were deployed at the Wageningen site. Five targets 
were used in total. They consisted of aluminum plates of 2.50 by 2.50 m, covered with Nextel 
Suede coating paint at different gray levels providing nearly Lambertian reflectance characteristics 
at various reflectance levels. Figure 6 shows the spectral reflectance as measured with a 
FieldSpec spectroradiometer.  

On 29 July 2004 a field campaign with a FieldSpec Pro FR spectroradiometer was performed. The 
FieldSpec instrument is built by Analytical Spectral Devices (ASD) in the US. The FieldSpec Pro 
spectroradiometer was deployed using the fiber optic cable with a 25° field of view. Measurement 
height above the object was about 1 – 1.5 m. As a result, the field of view at the object level was 
circular with a radius of 0.22 – 0.33 m. About 10 measurements per object were performed, 
whereby each measurement is the average of 50 readings at the same spot. Although weather 
conditions were constant, the spectroradiometer was calibrated regularly using a Spectralon 
calibration panel. This panel was calibrated very accurately in the laboratory and its characteristics 
were stored as calibration files on the computer. Before performing a new calibration, the 
Spectralon reference was measured just like the other objects. The latter measurement could be 
used for checking whether measurement conditions remained constant between two calibrations. 
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Figure 6: Spectral reflectance characteristics of the reference targets used at the Wageningen site 
in 2004.  

Statistical analysis 
As a first step, the variables measured by the Imspector Mobile were used to estimate the field 
measured variables using partial least squares (PLS) models. 

Step two was to build a model using the predicted field measurements from step 1 as response 
variable and the mean values of calibrated reflectances obtained with the UltraCam digital camera 
system coinciding with the measured area in the field as explanatory variables using a multiple 
linear regression (MLS) model. 

Finally, the predicted variables obtained from the UltraCam image were compared with the 
measured field variables and the model was used to extrapolate the field characteristics over the 
entire image. 

To select the number of latent variables in the PLS-model, the root-mean-square error of cross-
validation (RMSECV) was calculated as: 
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where y  is the average value of the observed variable of interest. The Q2 has strong resemblance 
with R2 but can become negative if the prediction of the model is inadequate (e.g. in case of 
overfitting). The Q2 is (as R2) strongly sensitive to the variation within the data set, so should be 
considered with caution. 

RESULTS AND DISCUSSION 
Field measurements 
Table 2 summarizes the field measurements performed for the 20 plots of the grass/clover 
experiment. Yield figures were at a high level for all plots. The plots were defined within a normal 
grassland field and no treatment differences existed between the various plots. As a result the 
range in yield figures is not large, which may reduce the statistical significance of relationships 
between spectral measurements and the field measurements. 

Table 2: Summary statistics for the 20 plots of the grass/clover experiment (harvested on 30 July 
2004). 

 Minimum Maximum Mean Standard deviation CV N 
Biomass (t/ha) 10.91 24.39 17.79 3.39 0.19 20 
DM yield (kg/ha) 2186 4187 3346 499 0.15 20 
DM content (%) 16.24 21.33 18.96 1.11 0.06 20 
N content (g/kg DM) 27.78 32.61 30.27 1.23 0.04 20 

Imspector Mobile 
Table 3 gives the correlation coefficients of the most important image parameters and the four 
grassland characteristics biomass, DM yield, DM content and N content. The variables GC and 
GC_SSD are most strongly correlated with biomass. Variability within a plot is negatively related to 
biomass, a larger heterogeneity means lower yields. Leaf clustering and wavelet entropy do not 
correlate strongly to any of the variables. This means that the content of white clover is not so 
important for differences in yield or contents between plots. 

The spatial patterns and heterogeneity within the plots is illustrated in Figure 7 for 4 variables 
derived from the 3CCD images of the Imspector Mobile.  

Table 3: Correlation coefficients of the most important image parameters and biomass, DM yield, 
DM content and N content. 

 Biomass DM yield DM content N content 
GC 0.85 0.75 -0.81 0.52 
GC_SSD_5cm2 -0.59 -0.50 0.59 -0.40 
GC_SSD_15cm2 -0.87 -0.78 0.78 -0.39 
Leaf clusters -0.04 -0.20 -0.26 0.14 
Wavelet entropy 0.17 0.28 0.11 -0.13 
R600/R710 -0.82 -0.77 0.71 -0.59 
IRI 0.78 0.69 -0.76 0.50 
(R800-R600) / (R800-R710) -0.82 -0.70 0.81 -0.51 
R600 -0.19 -0.20 0.11 -0.14 
R710 0.32 0.28 -0.34 0.23 
R800 0.80 0.69 -0.80 0.56 
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Figure 7: Plot with the spatial pattern of some variables derived by the Imspector; (a) 
GC_SSD@5cm2, (b) fraction of leaf clusters, (c) ground coverage and (d) relative values of leaf 
colour (reflection @ 600 nm / reflection @ 710 nm). 

UltraCam images 
After geometrically linking the Imspector Mobile measurements with the UltraCam images (see, 
e.g., Figure 5) for each plot a polygon matching the location of the Imspector measurements was 
defined. Table 4 summarizes the reflectances within the polygons of the four spectral bands. Also 
from these figures we must conclude that the variation between the plots is very limited for the 
blue, green and red spectral bands. Close study of the image further revealed that plot 20 was at 
the edge of a cloud shadow. Therefore, this plot was excluded from further analysis using the 
UltraCam data. 

Table 4: Summary statistics of the UltraCam spectral reflectances for the 19 plots of the 
grass/clover experiment (harvested on 30 July 2004). 

 Minimum Maximum Mean Standard deviation CV N 
Blue reflectance 0.0206 0.0266 0.0232 0.0019 0.08 19 
Green reflectance 0.0361 0.0416 0.0386 0.0017 0.04 19 
Red reflectance 0.0212 0.0281 0.0244 0.0022 0.09 19 
Near-infrared reflectance 0.5433 0.6909 0.6084 0.0373 0.06 19 
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Statistical models 
In Table 5 PLS models are presented for the fit of grassland charactistics versus two sets of Mobile 
Imspector variables.  

Table 5: Q2 and RMSECV values of the PLS models. 

Model Biomass (t/ha) 
Q2        RMSECV 

DM yield (kg/ha) 
Q2        RMSECV 

DM content (%) 
Q2        RMSECV 

N content (g/kg DM) 
Q2        RMSECV 

Model 1: Y=observed 
X=3CCD,  

0.719 1.748 0.504 342.6 0.596 0.688 0.063 1.161 

Model 2: Y=observed 
X=(3CCD V9 N17) 

0.381 2.596 0.269 416.1 0.189 0.975 0.084 1.148 

The model that included only parameters derived from the 3CCD images was most accurate for 
biomass, DM yield and DM content. For N content none of the models performed satisfactory, 
which is probably due to low variability in the measured N content values. Including data from the 
V9 and N17 sensors resulted in lower Q2 and larger RMSECV values. This is most probably due to 
the small number of observations.  

The predicted values of model 1, obtained by leave-one-out, were now used as response variable 
to fit a multiple linear regression (MLR) model. By using the leave-one-out predictions, the 
observed value for each point is not used for fitting the model, hence ensuring independence. As 
the explanatory variables the average values of the blue, green, red and near-infrared pixels 
corresponding with the field plots at the geo-referenced positions were used. 

The results are shown in Table 6 and Figure 8. 

The Ultracam bands explain a reasonable proportion of the variability in observed biomass and DM 
yield, using the predicted values from the close sensing device as response variable. The direct fit 
of Ultracam variables on the observed values was only slightly better (R2) than the indirect fit 
through the prediction of the close sensing model (Q2). This gives confidence that an indirect 
method using a close-range sensing device can be used for calibrating remote sensing images 
with only limited loss of accuracy. 

The results can be applied to a whole image. The extrapolation to the whole grassland parcel is 
illustrated in Figure 9. 

 

Table 6: Results for fitting the MLR model with the remote sensed data as explanatory variables 
and the predicted (leave-one-out) values of model 1 as the response variable. Q2 is here the 
percentage of variation of the original variable explained by this model, i.e. of the observed y and 
not of the response variable used in the model. In the second row a similar model was fitted, now 
using the observed variable as response variable. The hence obtained Q2 (=R2 in this case) is 
shown for correspondence. This is the maximum attainable percentage of variation that can be 
explained by a linear model. The RMSE is an estimate of the standard error. 

Model MLR 
X=(blue,green,red,NIR) 

Biomass 
Q2          RMSE 

DM yield 
Q2          RMSE 

DM content 
Q2          RMSE 

N content 
Q2          RMSE 

Y=pred. from Model 1 0.746 1.656 0.647 288.1 0.552 0.733 0.253 1.060 
Y=Original observations 0.770 1.577 0.675 276.1 0.577 0.712 0.346 0.991 
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Figure 8: Predicted versus observed values are shown for the four most important characteristics. 
The predicted values are obtained by fitting a MLR-model using the fitted leave-one-out data of 
Model 1 as response variable and the remote sensing data as the explanatory variables. The black 
line is the line y=x. 
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Figure 9: Spatial pattern of the predicted biomass (t/ha) for the grass/clover parcel at the 
Droevendaal experimental farm, Wageningen, the Netherlands. 

CONCLUSIONS 
The close-range sensing data, obtained by the Imspector Mobile, provide good estimates for 
biomass and DM yield and a reasonable estimate for DM content. This is due to a good estimate of 
ground cover, using the detailed information in the 3CCD camera.  

The content of the various nutrients like N were not estimated well in this experiment. This was due 
to the limited size of the dataset and the limited observed range, since no special treatment was 
imposed on the plots. Therefore the use of the spectrographs (V9, N17) in this experiment was 
limited. In other experiments these proved to be very useful for measuring nutrients like N [4, 6, 8]. 

We have shown that it is possible to predict biomass, DM yield and DM content from remote 
sensing data through an indirect fit of closely sensed data with the Imspector Mobile. This allows 
new ways for grassland management over large areas combining the fast, non-destructive 
measurements of close sensing devices with the remote sensing data. This opens new ways to 
precision agriculture and mapping of regional productivity, where fast, non-destructive and 
reasonably accurate close-range sensing measurements can be used for calibrating remote 
sensing information.  

The calibration of the Imspector Mobile is crucial for future application. It would be nice to see how 
robust prediction models perform that were calibrated with data from previous experiments. This 
may reduce the amount of required ground truth data even further. This is planned in future 
experiments. 

From a remote sensing point of view it will be interesting to investigate whether the use of more 
than the four spectral bands of the UltraCam camera can further improve the predictive power of 
the remote sensing data. As a next step it is planned to use airborne imaging spectrometry data for 
the extrapolation step. 
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