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ABSTRACT 
In this paper, a multi-resolution approach is presented for mapping surface imperviousness in ur-
banised areas. The approach involved two steps. First, a detailed land-cover map was produced 
from a high resolution (HR) Ikonos image that covers part of the Brussels metropolitan area. The 
output of the classification was improved with post-classification techniques. This enhanced HR 
classification of a relatively small area was then used to train a neural network based sub-pixel 
classification model that estimates impervious surface cover proportions within the pixels of a me-
dium-resolution (MR) Landsat ETM+ image that covers the entire agglomeration of Brussels.  

Both the HR and the MR map were used as input to a rainfall-runoff simulation on the upper 
catchment of the Woluwe River. Three alternative land-cover scenarios were tested: one for which 
a single impervious surface coefficient was defined for all urban classes, a second in which sepa-
rate coefficients were derived for different types of urban morphology and finally, a spatially fully 
distributed scenario was applied where each cell in the simulation model was assigned its own 
coefficient based on the HR and MR maps of imperviousness.  

The study points to some interesting conclusions: it shows that estimates derived from satellite 
data may strongly differ from those made by experts for some urban classes, that the use of spa-
tially distributed land-cover information obtained from satellite derived maps produces higher peak 
discharges, and little difference was observed between results obtained with detailed impervious 
surface maps derived from HR data and sub-pixel estimates derived from MR data. This proves 
that multi-resolution methods, which provide information on surface imperviousness for areas of 
large extent at relatively low cost, may be an interesting alternative for expensive HR mapping for 
rainfall-runoff modelling at catchment level. 

INTRODUCTION 
Continuing worldwide urban growth increases the amount of impervious surfaces of man-made 
materials, which change the hydrological properties of a watershed: instead of gently infiltrating, 
surface water will runoff to the rivers more quickly, picking up potentially polluting substances on its 
way. This in turn increases the risk for water pollution and floods in the watershed, requires the 
construction of expensive water purification systems, hampers the recharging of aquifers and 
boosts erosion (Arnold & Gibbons, 1996; Schueler, 1994).  
Numerous methods have been proposed for impervious surface mapping, many of which rely on 
existing land-use datasets (Prisloe et al., 2000; Sleavin et al., 2000; Cain, 2004). These so-called 
indirect methods associate a percentage of imperviousness with each land-use type. The draw-
back of this approach is that there is no standardized method for deriving these coefficients and 
that there may be a high variability in the amount of imperviousness within the same land-use 
class. If mapping at a spatially more detailed level is required, a direct approach is preferred (Cain, 
ibid.). This involves deriving impervious surfaces directly from aerial photographs or satellite im-
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ages.  Satellite images are especially well suited for mapping impervious surfaces (Slonecker et 
al., 2001). In comparison with alternative data sources such as aerial photographs, they have a 
larger spatial extent, a relatively fast repeat cycle and are competitively priced. There is a wide 
range of satellite data types available on the market that could be used for impervious surface 
mapping. In general terms, impervious surface information could be extracted directly from any 
land-cover classification derived from satellite imagery. The cost, in terms of data requirements 
and effort, the accuracy of the end-product and the feasibility of the project, however, will be 
largely dependent on the selected satellite data type. For instance, it will be difficult in practice to 
obtain a complete and cloud-free coverage for larger areas when using high resolution (HR) im-
ages (type Ikonos, Quickbird) for land-cover mapping because of the relatively small footprint of 
this type of images. Furthermore, this method would also be very cost-intensive, especially when 
frequent updates are required. On the other hand, satellite data with a lower spatial resolution (i.e. 
medium resolution data - MR) are cheaper and offer greater spatial extent but also provide less 
spatial detail, which may lead to a product that does not meet customer requirements.   

Sub-pixel classification techniques offer the opportunity to combine the advantages of satellite im-
ages with different spatial resolutions by exploiting the relationship between the spectral signatures 
of pixels in a high resolution image and the proportions of land-cover classes present within these 
pixels, which are in turn derived from a HR land-cover classification. This method can therefore 
create synergy by retaining the large spatial extent of MR satellite platforms while making optimal 
use of the spatial detail provided by HR satellite platforms.  

Several techniques for sub-pixel impervious surface mapping have already been examined: Yang 
et al. (2003) applied decision trees, Ji and Jensen (1999) used spectral unmixing, and Wang et al. 
(2000) and Flanagan and Civco (2001) employed artificial neural networks (ANN).  The purpose of 
our research is to use sub-pixel classification driven by an ANN to estimate the proportions of four 
land-cover classes (bare soil, impervious surfaces, water and vegetation) within Landsat ETM+ 
pixels using a land-cover classification derived from an overlapping VHR Ikonos image as refer-
ence data.  The ANN learns the relationship between the spectral information of the ETM+ pixels 
and the proportions of the four land-cover classes within each pixel from a randomly selected train-
ing set of ETM+ pixels for which the corresponding class proportions are derived from the HR land-
cover classification. Once a reliable ANN model is obtained, it can be applied on any ETM+ pixel, 
including those for which no HR land-cover classification is available.  To this end, we developed 
and compared two ANN sub-pixel models: a first model only has the multispectral ETM+ channels 
as input variables and a second model combines the multispectral channels with the band-ratios of 
each channel (e.g. band1/band3). 

The performance of these models will be heavily dependent on the quality of the input data. Errors 
will occur when the land-cover class composition of ETM+ pixels is different from that of the con-
stituent Ikonos pixels.   This may occur for three reasons: (1) the two images are not well geomet-
rically aligned, (2) the HR classification contains errors, and (3) land-cover changes have occurred 
between the acquisition dates of the ETM+ and Ikonos images.  These issues were taken into ac-
count before we developed our models: care was taken to assure a good co-registration between 
the ETM+ and the Ikonos image, post-classification techniques were applied to improve the quality 
of the HR reference classification, and temporal differences between the two images were ac-
counted for by applying temporal filtering on the data samples.  

METHODS 
Developing the reference land-cover classification 
We used an ANN to build the reference land-cover classification, which consists of 11 classes: 
light and dark red surfaces, light, medium and dark grey surfaces, bare soil, water, crops, shrub 
and trees, grass, and shadows. This neural network was created with Neuralware’s NeuralWorks 
Predict® software. The accuracy of the resulting land-cover map was assessed with independent 
validation data. 
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Training data for this classification were obtained by digitizing about 200 random training pixels per 
class on the Ikonos image. As an independent validation set, we chose a stratified random sample: 
the amount of pixels to be sampled in each class depended on the class’s prominence in the im-
age. With the training data, neural network models were built according to 4 scenarios. Each type 
of network had a different combination of input variables: only the multi-spectral bands, the multi-
spectral bands with the PAN band, the multi-spectral bands with the PAN band and a vegetation 
index (NDVI), and the multi-spectral bands with PAN, NDVI and 2 texture measures. The texture 
measures we used were local variance and binary comparison matrix (Murphy, 1985). Transforma-
tions of the input bands and a selection according to their relative contribution to the overall infor-
mation content were accomplished with NeuralWorks Predict®. The transformed input variables 
that were retained in each scenario to actually perform the classification were chosen from a set of 
5 mathematical transformations per original input band using a genetic-based variable selection 
algorithm embedded in the software.  

The success of our sub-pixel classification strategy depends heavily on obtaining reliable training 
data, i.e. accurate land-cover proportions for each ETM+ training pixel. Because many potential 
sources of bias were present in the resulting land-cover map, we improved its accuracy and co-
herence with several post classification techniques: shadow removal, structural filtering (Barr and 
Barnsley, 2000) and correction of classification errors with knowledge-based rules. To this end, we 
adopted the method and workflow suggested by Van de Voorde et al. (2004, 2006). The 11 
classes were aggregated afterwards to a single vegetation class (including shrub and trees, grass 
and crops), a single “impervious surfaces” class (including red and grey surfaces) and the classes 
water and bare soil. 

Subpixel classification 
Once reliable reference data were obtained, we could build neural network models for sub-pixel 
classification with a random sample of high resolution pixels, which were drawn from the part of the 
image that overlaps the HR classification. Each sample point consisted of the spectral values of 
the ETM+ pixel and the proportion of the four target classes (bare soil, built-up surfaces, water and 
vegetation) within this pixel.  

Because it will be very difficult in practice to obtain MR and HR images of the same dates, it is 
likely that land-cover changes are present in the images used in a multi-resolution approach. 
These changes may be seasonal (leaf-on versus leaf-off for deciduous trees, crop cycles) or point 
to actual land-use changes (e.g. urban growth). To remove changed pixels from the random sam-
ple of HR pixels, we assumed that the Normalized Difference Vegetation Index (NDVI) of the HR 
pixels shows a clear relationship with the average NDVI of the constituent HR pixels and applied a 
non-linear regression to remove outlying pixels.   In doing so, we had to take into account that the 
digital numbers (DN), which represent the spectral response from the visible red and near infrared 
channels required to calculate NDVI, originate from two different sensor platforms. To account for 
this, they were converted to in-band radiance at sensor aperture. This was achieved with the equa-
tions proposed by Taylor (2005) for the Ikonos images and by Irish (2000) for the ETM+ image.  

Two models were then built with NeuralWare's Predict software and compared independently. 
These models differed in the type of input variables, i.e. spectral channels that were used. The first 
model had the six ETM+ multispectral bands as input (bands 1-5 and band 7). The second model 
included all possible ratios between the spectral channels in addition to the multispectral channels.  

The performance of the models was assessed by applying them on an independent validation set 
to estimate the proportions of each of the four classes. The total mean absolute error (TMAE) was 
used to assess the overall accuracy of the proportion estimation. The TMAE is calculated by mak-
ing the sum of the per-class mean absolute errors (MAE) of each target class, which are in turn 
derived by taking the mean of the absolute values of the difference between predicted and refer-
ence proportions of all validation samples. The per-class MAE can be interpreted as an error per-
centage, while the TMAE is a more general error measure, only suitable to mutually compare dif-
ferent models. Because it is the sum of the per-class MAE’s, its value lies between 0 (no error) and 
2 (maximum possible error) and it cannot be interpreted as a percentage.  
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Run-off simulation 
Both the HR and the MR map were used as input for a rainfall-runoff simulation of the Upper-
Woluwe catchment, located in the south-eastern part of Brussels. Three alternative land-cover 
scenarios were tested. First, one single impervious surface coefficient was defined for all urban 
classes based onexpert judgement and on calculation of an average level of imperviousness from 
the HR and MR classification results. Next, separate coefficients were derived for different types of 
urban morphology. Finally, a spatially fully distributed scenario was applied where each cell in the 
simulation model was assigned its own coefficient based on the HR and MR maps of impervious-
ness.  

A modelling approach with hourly time step was used for the rainfall-runoff simulation for the Upper 
Woluwe catchment. The applied WetSpa (Water and energy transfer between soil, plants and at-
mosphere) distributed GIS-based hydrological model predicts peak discharges and hydrographs 
and simulates the spatial distribution of catchment hydrological characteristics, based on hydrome-
teorological data and distributed maps of topography, soil type, and land cover (Liu and De Smedt, 
2005). 

RESULTS 
Accuracy of the reference classification 
The pixel-based classification of the Ikonos image was obtained by training and comparing several 
neural networks. The best performing network consisted of 9 inputs, 17 hidden nodes and 11 out-
put nodes (i.e. the 11 land-cover classes). The input variables were mathematical transformations 
of the red, green and blue image bands, the NDVI and two texture measures, namely standard 
deviation and binary comparison matrix. The overall performance of this network on an independ-
ent validation set of 2243 samples was characterized by a kappa index-of-agreement of 0.91. 

Despite the relatively high numeric accuracy of the classification result, many problems such as 
shadow, structural clutter and classification errors remained. The first step in improving the classi-
fication was to remove the shadow pixels using the technique described in Van de Voorde et al. 
(2006). In this approach, shadows are reclassified with a separate neural network that was trained 
with the activation levels of the network that was used to make the land-cover classification. Ap-
proximately 56% of the separate set of shadow validation samples was correctly re-assigned to a 
new class with the ANN-based shadow reclassification. This obviously introduces new errors, but 
also increases the information content of the classification, i.e. the shadows are removed. The 
newly introduced errors can be solved with other post-classification techniques.  The second step 
of the post-classification enhancement consists of applying knowledge based rules to correct clas-
sification errors and a structural filter to reduce structural clutter. In total, 14 rules were developed 
and applied on the land-cover classification after shadow removal.  An example of such a rule is 
shown below: 

- pixels belonging to <crop> regions that are adjacent to <shrub and trees> or <grass> and that are 
smaller than 1400 pixels, are assigned to their second most probable class if this class is either 
<shrub and trees> or <grass>, otherwise they are changed into the class to which they are most 
connected with. 

The kappa index, which was calculated on the same validation set, increased from 0.91 to 0.95 
after post-classification.  

 

 

Temporal filtering 
In order to obtain a neural network that will be used for sub-pixel classification, temporally filtered 
training and validation samples are required.  A total of 9 650 samples was randomly selected on 
the part of the ETM+ image that overlaps with the Ikonos classification. For each of these samples, 
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the NDVI and the average NDVI of the Ikonos pixels that belong to it were calculated, using the 
spectral radiance values. The correlation coefficient between these two variables was 0.87. 

To remove changed pixels, a quadratic function was fit to the data with the least-squares method, 
and the residuals of the sample points were examined. Samples whose residual value was larger 
than two times the standard deviation of all residuals were deleted. When this procedure was ap-
plied a first time, 410 samples were removed and the correlation increased to 0.92.  After a second 
iteration, 8856 pixels remained with a correlation of 0.94. Further iterations provided no signifi-
cantly better result.  

The 8856 pixels that remained after temporal filtering were randomly split in 2048 training and 
6808 validation samples. These two datasets were used respectively for training and validating the 
neural network models for each of the two scenarios. 

Sub-pixel classification 
To begin with, we developed a model on temporally filtered data to predict proportions of the four 
target classes using only mathematical transformations of the ETM+ bands as actual input to the 
network.  These transformations are required to scale the input data to values between 0 and 1, 
and the function used to achieve this (linear, exponential…) influences the training process.  The 
genetic algorithm based variable selection embedded in Predict was used to determine which 
transformations were best suited for a particular model.  

Table 1: total mean absolute error (TMAE) and mean absolute error for each target class 

 BARE IMPERVIOU
S 

VEGETATION WATER TMAE 

With temporal filtering 
and without band ratios 0.057  0.094  0.099  0.029  0.279 

Without temporal filter-
ing and without band 
ratios 

0.065  0.111  0.122  0.004  0.302 

With temporal filtering 
and with band ratios 0.057  0.090  0.094  0.018  0.259 

The performance of this first neural network model on the validation data is shown in the top row of 
table 1. Both the per-class mean absolute errors (MAE) and the total mean absolute error (TMAE) 
are shown. The per-class MAE’s can be interpreted as an average error percentage, i.e. the mean 
magnitude of the estimation error. For example, the error made in estimating the amount of imper-
vious surfaces within a validation pixel was 9.4% on average. For vegetation, the error was slightly 
higher (±10%). The per-class mean errors (predicted minus reference, i.e. no absolute value), 
which provide a global view of the model’s bias, were very close to zero for each class. This 
means that there is no systematic bias and that the errors will compensate each other if the model 
is used to produce aggregated statistics of larger areas, e.g. calculate the percentage impervious-
ness for an entire watershed.  

The second row of table 1 shows the errors obtained with a neural network based on the same 
selection of input variables, but trained on samples that were not temporally filtered. As can be 
seen from the table, this increased the TMAE from 0.279 to 0.302. The per-class MAE’s for vegeta-
tion and impervious surfaces each rise with about 2 percentage points. The following experiment 
will therefore be conducted on temporally filtered data and compared with the first experiment, out-
lined above. 

In the second experiment (ANN2), all unique band-ratios of the six multispectral channels (15) 
were added to the input, bringing the total number of potential variables to 21. Mathematical trans-
formations were calculated, and again the variable selection algorithm was used to withhold vari-
ables with meaningful information content.  The neural network that resulted from this setup had 9 
inputs, 0 hidden nodes and 4 output nodes. The transformed input channels that were withheld by 
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the variable selection included the following bands or band ratios: band 4; ratio 1/5, 2/5 (2 trans-
forms), 2/7 (2 transforms), 3/4 (2 transforms) and 4/7.  

When this model was applied to the validation data, the TMAE slightly decreased from 0.279 to 
0.259 (table 1). This improvement can be attributed for the largest part to the drop of the MAE of 
the class “water”. Prediction of impervious surfaces and vegetation improved only slightly.  

Figure 1(a) shows an impervious surface map produced by ANN2 on the ETM+ data, correspond-
ing to the spatial extent of the Ikonos image. This figure can be compared to figure 1(b), which 
shows an impervious surface map of the same area, derived directly from the VHR classification, 
but with proportions aggregated to 30 meter resolution. From the map highlighting the errors, i.e. 
predicted minus reference proportions (fig. 1(c)), it becomes apparent that the model underesti-
mates the amount of impervious surfaces within pixels inside the dense urban centre. This may 
indicate that high proportions of impervious surfaces are estimated lower by the model. 

 

 

 

 

 

 

 

 

 

Figure 1: detail of the impervious surface map of Brussels for the part that overlaps with the Ikonos 
image (a); same detail derived directly from the Ikonos land-cover classification (b); map showing 
the differences between the two previous maps (predicted – reference) (c). 

Run-off 
In the first, non-distributed scenario, the estimated impervious percentages were similar: 44% and 
46% for respectively the HR and MR image. This is a significant difference compared to the stan-
dard expert judgement of 30% imperviousness. The simulated discharge peaks are 10-20% higher 
in the scenario with the HR image estimated average runoff coefficient than in case of expert 
judgement runoff coefficient. In the second scenario, with semi-distributed adjustment, differences 
between hydrographs simulated using HR and MR are very small. The runoff hydrograph in this 
scenario is slightly higher than in scenario one, based on an average impervious value determined 
by use of HR. Runoff simulated in the fully spatial distributed scenario and based on HR data gives 
very similar, but slightly higher discharges than in case of MR data. Compared to the non-
distributed scenario, the maximum peaks in the distributed scenario are about 10% higher. This 
shows that for runoff simulation it is evidently important to know what the impervious percentage in 
the urban area is. However, it is even more important to derive its spatial distribution. 

Figure 2 presents a comparison of simulated hydrographs for all scenarios of imperviousness dis-
tribution elaborated in this study: scenario 1, non-distributed with a priori guessed average imper-
viousness percentage value of 30%; scenario 1, non-distributed average imperviousness percent-
age of 44% calculated from Ikonos; scenario 2, semi-distributed for different classes and impervi-
ousness percentage calculated from Ikonos and Scenario 3, fully-distributed per cell spatially var-
ied imperviousness percentage. Analysed hydrographs show a relation between the level of imper-
vious area and distribution versus simulated peak-discharges. The highest discharges are always 
simulated for the fully-distributed scenarios and the lowest for non-distributed ones. Increased 
connectivity of high runoff generating urban zones in the fully distributed scenario explain the 
higher peak discharges in this scenario and the need for distributed impervious estimates.  
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Figure 2: comparison of hydrographs simulated for 3 scenarios by using Ikonos data. Simulation 
period from 3rd of May 2005 1.00 am to 6th of May 2005 9.00 am. 

CONCLUSIONS  
The first goal of this research was to develop and test a strategy for impervious surface mapping 
based on neural network driven sub-pixel classification of a Landsat ETM+ image, using an Ikonos 
land-cover classification to collect reference proportions for 4 target land-cover classes.  To 
achieve this, we first required a reliable reference classification. A land-cover map consisting of 11 
classes was made using a pixel-based neural network classifier. Because many problems related 
to shadows, noise and classification errors were present, post classification techniques were ap-
plied and succeeded not only in improving the visual appearance of the land-cover map, but also 
its overall kappa index (from 0.91 to 0.95). Then, two sub-pixel classification models were devel-
oped using the land-cover map to derive reference proportions for training and validation purposes. 
A first model (ANN1) was based on the multispectral data available in the ETM+ image. The posi-
tive effect of temporal change filtering, necessary to eliminate changed pixels from training and 
validation data was shown by a decrease of the total mean absolute error of nearly 8% when fil-
tered samples were used. For the second model (ANN2), band ratios of the six multispectral ETM+ 
channels were added to the training data. This also proved to have a positive impact as the error 
further decreased with nearly 7%.  Using the ANN2 model, sub-pixel impervious surface maps 
were derived for the entire subset of the ETM+ image, including those parts that were not covered 
by the Ikonos image from which the reference land-cover map was derived. 

In the second part of the research, both the HR and the MR map were used as input for a rainfall-
runoff simulation on the Woluwe upper catchment, located in the south-eastern part of Brussels. 
Three alternative land-cover scenarios were tested: one for which a single impervious surface co-
efficient was defined for all urban classes, a second in which separate coefficients were derived for 
different types of urban morphology and finally, a spatially fully distributed scenario was applied 
where each cell in the simulation model was assigned its own coefficient based on the HR and MR 
maps of imperviousness.  

The study shows that although expert estimations of average imperviousness are reasonable, es-
timates derived from satellite data may strongly differ from expert knowledge for some urban 
classes, leading to substantially different estimates of discharge at catchment level. Furthermore, 
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the use of spatially distributed land-cover information obtained from satellite derived maps proves 
to produce higher peak discharges compared to scenarios based on the use of average levels of 
imperviousness for each land-use class. Little difference was observed between results obtained 
with detailed impervious surface maps derived from HR data and with sub-pixel estimates of im-
perviousness derived from MR data. This proves that multi-resolution methods, which provide in-
formation on surface imperviousness for areas of large extent at relatively low cost, may be an 
interesting alternative for expensive HR mapping for rainfall-runoff modelling at catchment level. 

Future research will focus on assessing the robustness of the sub-pixel models by applying them 
on other parts of the same ETM+ image from which the subset in this study was extracted. The 
near-zero global error biases show that this may provide promising results.   We will also continue 
to compare the sensitivity of runoff models to impervious surface maps developed with different 
techniques and input data, e.g. the sub-pixel technique described in this paper versus direct ex-
traction of information on surface imperviousness from HR data. 
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