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ABSTRACT 
The city of Toronto, Ontario and its surrounding regions constitute the largest urban agglomeration 
in Canada and the fifth largest in North America. Urban development within this area is an impor-
tant planning and environmental issue. Landsat images from 1972 to 2004 (a total of 10 scenes 
covering a period of 32 years) were used in this research that cover the majority of the contiguous 
urban area. A series of change detection experiments were performed that compared methodolo-
gies and techniques. The results greatly improved classification accuracy, particularly for Landsat 
Multispectral Scanner (MSS) data. 

The distribution of urban growth becomes apparent when divided by municipality. The City of To-
ronto is the largest municipality, and it accounted for 16.07% of total urban change. Mississauga 
was the largest contributor, accounting for 21.29%, although its municipal area is only about half 
that of Toronto. Development prior to 1972 within the Toronto municipal boundaries helps in pro-
viding an explanation for this finding. The next largest contributors were Brampton (14.91%), 
Vaughan (13.62%), and Markham (10.02%). Ajax and Pickering accounted for the smallest propor-
tion of the total change, at 3.37% and 3.93% respectively although this may have been influenced 
by missing data (due to WRS-2 scene divisions) in the northeast corner of some of the Landsat5 
and Landsat7 Path 18 Row 30 scenes. Overall, a yearly average of 14.1 km2 of new development 
was observed. 

INTRODUCTION 
The underlying assumption for change detection using remotely sensed data is that there will be a 
difference in the spectral response of a pixel on two dates if land cover changes from one type to 
another (i,ii). Ideally, data used for change detection should have constant spatial, spectral, and 
radiometric resolutions (i). It is difficult to have such ideal situations and therefore, a thoughtful 
understanding of the nature of remotely sensed data and environmental characteristics is essen-
tial. Failure to understand the impact from the various data and environmental conditions on 
change detection applications can lead to inaccurate results (iii,iv). 

Geographically, urban change refers a difference in which rural areas are converted to urban areas 
from one time to another. The Greater Toronto Area (GTA) is experiencing rapid urban expansion. 
From 1991 to 2001 the population increased 20%, to 5.1 million people (44.5% of the total Ontario 
population, and 16.9% of the total Canadian population) (v). It is North America’s fifth largest and 
second-fastest growing urban area region (vi). The latest estimates show that Toronto will continue 
to be Canada's biggest urban-population magnet, growing by as many as 100000 people a year 
and more than two million people will be added to the GTA in the next 30 years. Rapid urbanization 
has led to the consumption of agricultural land, urban sprawl and pollution issues. Twice as much 
land in the Toronto area could be developed in the next 20 years as was covered during the past 
two centuries (vii). Increased population, traffic, and infrastructure needs burden the urban envi-
ronment and seriously affect the overall quality of life. Thus, monitoring urban change in terms of 
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the amount and spatial pattern in the GTA area is significant for urban planning, land-use planning, 
and the sustainable management of land resources. Urban change detection research in this area 
has been successfully conducted by Forsythe (viii, ix) and Zhao (x). However, this study examines 
urban change detection from 1972 to 2004 with a greater number of images and a smaller image 
acquisition interval. The objectives are to: explore efficient methods to quantify urban growth over 
large agglomeration areas using a time series of multi-sensor Landsat data; assess the accuracy 
of land cover classification and detected urban changes; and to calculate and delineate the amount 
of urban change and the spatial patterns associated with it. 

METHODS 
Image differencing and ratio methods are not only limited to band-by-band subtraction and ratioing. 
They are also used as an important means to enhance results. Jensen and Toll (xi) used the dif-
ferenced results from two different dates of texture analysis to improve change detection. Singh (ii) 
believed that NDVI differencing was one of the few, most accurate change detection techniques. 
Yuan and Elvidge (iv) adopted differencing and ratioing methods for principal components to com-
pare and evaluate accuracies of land-cover change detection.  

Since change detection techniques have different conditions in data and purposes, it is difficult to 
compare the vast array of change detection methods (i, xii , xiii , ii). No one single tech-
nique/algorithm is optimal. For instance, image differencing, image regression, and Principal Com-
ponent Analysis (PCA) are thought to perform better than postclassification techniques (ii). How-
ever, Mas (xii) reported that postclassification performed better than image differencing and PCA. 
This is because urban change detection techniques are closely related to data quality, resolutions, 
study area, and accuracy requirements (i). Overall, preclassification or enhancement techniques 
such as image differencing (xi, xiii, ii, xiv, xv, iv), image regression (xiii), PCA differencing including 
standardized and selective PCA (xvi, xvii, xviii, xii, ii), and Normalized Difference Vegetation Index 
(NDVI) differencing (xix,xx,xxi) greatly improve the classification results and accuracy of detected 
urban change (xxii). The postclassification technique has from-to patterns (xviii), but its accuracy is 
not as good as results from preclassification change detection techniques (xxiii, xiv, xv). Fung and 
LeDrew (xxiv) reported the threshold values tightly associated with accuracies for different algo-
rithms and noted that they are sensitive to different natures of change. Jensen (xxiii) pointed out 
that differencing or ratioing of spectral data is practical but may be too simple. Therefore, a combi-
nation of methods (such as multi-date classification, preclassification with postclassification, and 
preprocessing operations) may produce better results in terms of decreasing the chance of error, 
and in improving the accuracy of detecting the nature and amount of change (xxv, xviii, xii). 

The methodology used in this research focuses on determining urban extent and the change that 
occurs between dates of image acquisition. However, due to the differences between Landsat 
sensor data, a single method is not sufficient. The development of the methodology mainly de-
pended on experiments, by which the optimal methods were selected and some new combined 
methods were created. These include classification with and without enhancement (enhancement 
here refers to including items that are derived from the original satellite bands such as principal 
components - PCs, texture, and NDVI), radiometric ratioing (between image dates), image differ-
encing, and Geographic Information System (GIS) post-classification processing.  

Accuracy assessment was also an essential step. With the advent of more advanced digital satel-
lite remote sensing techniques, the necessity of performing an accuracy assessment received re-
newed interest (xxvi). The accuracy of remote sensing-derived thematic information is the founda-
tion for further data analysis and decision-making (xxvii, xxviii). The finalized methodology (based 
on the experiments) is shown in Figure 1.  
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Figure 1: Data processing Procedures 

RESULTS 
For radiometric ratioing using Multi-Spectral Scanner (MSS) and Thematic Mapper (TM) imagery, 
the unchanged urban area between two dates has a ratio value of 1.0, showing a common tone in 
the resampled image, which is different from urban growth areas, which have values either higher 
or lower than 1 with either brighter or darker tones. More important is that the resampled 30m spa-
tial resolution results in the unchanged urban area having a more detailed urban texture, which 
greatly helps in distinguishing urban, rural, and change areas. The results for the classification of 
enhanced MSS data showed that including PCs, texture, and NDVI is insufficient for distinguishing 
urban from rural areas. When ratio derived elements are included, the results are significantly bet-
ter in terms of visual and statistical results. 

The classification of urban growth was the primary goal of this research and the results indicate 
that flexible methods must be used in order to achieve the best results. The generation of en-
hancements to include in classification procedures provides additional information that is useful in 
obtaining higher classification accuracies. Ratios between MSS and TM data were especially help-
ful in distinguishing urban growth. Image differencing when combined with urban extent masks 
allowed for agricultural changes to be readily identified and separated from urban area modifica-
tions. 

The accuracy statistics are very good. The producer’s accuracy for urban features for all dates is 
above 91% except for two dates of MSS data – 1972 and 1974, which are 81.82% and 88.00% 
respectively. The results indicate that the identification of urban features was performed very well, 
particularly for MSS data, in which the producer’s accuracy of the 1974 classification – 88.00% is 
very close to the average TM level. The producer’s accuracy for the 1977 MSS data – 91.84% is 
even a little bit higher than some TM data results. 
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The greater spectral and spatial resolution of the TM and the Enhanced Thematic Mapper plus 
(ETM+) data allowed for improved performance in capturing urban features when compared to 
MSS data. However, the gap between MSS data and TM/ETM+ data was reduced by enhance-
ments, in which the MSS data were resampled. 

Figure 2 represents the total urban change from 1972 to 2004.  

 
Figure 2: Total urban change from 1972 to 2004. 

 

By visual comparison, it is clear that since 1972 the urban area has expanded in three directions, 
W, NW, and NE while it was limited by Lake Ontario on the south side. The amount of urban 
growth from 1972 to 2004 is remarkable. The urban area in 1972 was 663.1 km2 whereas it was 
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1327.6 km2 by 2004. The total urban growth between these two dates is 664.5 km2, which is dou-
ble the urban area in 1972. Urban growth has varied over this 32-year period of time. In addition, 
urban extent includes three different components – developed area, new excavated area, and new 
developed area. Developed area is the unchanged part between two compared dates. 

New excavated area is converted from green space, but not built-up yet. Therefore, the new devel-
oped area converted from the excavated area to the built-up area is of more concern. Table 1 
summarizes the growth data for comparison purposes. The annual growth is produced from the 
new developed area by dividing with the length of an interval.  

Table 1: Annual growth statistics for all available dates. 

Interval 
Developed 
(km2) 

New Developed 
(km2) 

New Excavated 
(km2) 

Annual Growth 
(km2) 

1972-1974 603.0323 35.6464035 87.00415875 17.8 
1974-1977 652.4024 48.16236375 51.483654 16.1 
1977-1985 774.772 22.6601505 64.5560055 12.1 
1985-1987 905.8911 26.9975655 54.6952905 13.5 
1987-1990 888.889 50.96300175 105.8865345 16.9 
1990-1994 970.4105 57.96216 38.786562 14.5 
1994-1999 1029.459 60.4817595 71.04019725 12.1 
1999-2001 1109.538 23.14343925 45.76135275 11.6 
2001-2004 1225.02 35.938514 47.79064424 11.9 

Places of Growth 
Using raster manipulation in ArcGIS, the amount of urban growth from 1972 to 2004 was calcu-
lated for each municipality. The difference in municipal urban extents between 1972 and 2004 is 
strongly illustrated in Figure 3. There is an uneven distribution of urban changes. Mississauga was 
the largest contributor to the urban change between 1972 and 2004, accounting for 21.29% of the 
total although its municipal area is only about half of the City of Toronto. Toronto accounted for 
16.07% of the total. Notice that Toronto is the largest municipality within the contiguous urban 
area. The next largest contributors were Brampton (14.91%), Vaughan (13.62%), and Markham 
(10.02%). Ajax and Pickering accounted for the smallest proportion of total urban change in the 
study area, at 3.37% and 3.93% respectively although this may have been influenced by the miss-
ing data (due to WRS-2 scene divisions) in the northeast corner of some of the Landsat5 and 
Landsat7 Path 18 Row 30 scenes. 

The results from Table 1 show the growth rates throughout the different historical periods from 
1972 to 2004. The first peak of urban growth occurred between 1972 and 1977, with an annual 
growth rate of 17.82 km2 between 1972 and 1974, and 16.05 km2 between 1974 and 1977. The 
second peak of new urban development occurred at the end of 1980’s, i.e., between 1987 and 
1990, in which yearly urban growth was 16.9 km2. From 1977 to 1985, the speed of new urban 
development slowed down, in which the yearly new developed area went from 16.05 km2 in 1977 
to 12.11 km2 in 1985. The second slow period for new urban development occurred from 1990 to 
1994 (16.99 km2 in 1990 to 12.10 km2 in 1994). After 1994, i.e. during the last 10 years, the pace 
of new urban development was the lowest among compared dates. The yearly growth was 12.1 
km2 between 1994 and 1999, 11.6 km2 between 1999 and 2001, and 11.9 km2 between 2001 and 
2004. The slow period in new urban development between 1990 and 1994 can in part be explained 
by the impact of an economic recession that occurred in this period of time. The reason for slow 
growth between 1977 and 1985 is not completely clear because of the longer time period (8 
years), although an early 1980’s recession certainly played a role.  
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Figure 3: Urban growth in different municipal areas. 

CONCLUSIONS 

A series of new urban development periods with varied growth rates have occurred over the 32 
year period. Two peak new development periods occurred between 1972 and 1977 and between 
1987 and 1990. Two periods with lower new urban development rates occurred from 1977 to 1985 
and from 1990 to 1994. Over the last 10 years, a relatively stable rate in new urban development 
has occurred.  

Peak yearly new urban development periods seemed to be synchronized with times of urban de-
velopment backfill whereas the slower growth periods seem synchronized with times of outward 
urban expansion and sprawl. 
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The images did not cover the full GTA area and were not completely consistent in coverage for the 
northeast corner of the study area. This research would have been improved if image data for 1980 
or 1981 were available. 

Urban change detection by using a variety of remote sensing techniques allows for the identifica-
tion of urban features and the capturing of urban changes over time. In combination with GIS, the 
total urban area and its change can be easily assessed. The accuracy of the derived urban map 
results is very good. The producer and user’s accuracies for all TM data were above 91% and 
93%, respectively, for the urban class. By using enhancements, the producer and user’s accura-
cies for MSS data were greatly improved, and above 81% and 85% respectively for urban areas. 
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