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ABSTRACT 
 
Applications of hyperspectral remote sensing data within the urban environment are still rare, 
although there is a need for a time- and cost-efficient monitoring. Airborne hyperspectral 
sensors can help to improve this situation allowing more detailed and precise determination of 
urban surface cover types. For image classification or spectral sub-pixel analysis, definition of 
representative spectral endmembers is the most important but also most time-consuming 
operation. In order to simplify this procedure, unsupervised techniques were developed. 
Independent from their limitations to process the high spectral variability of urban materials, no 
material information is given and has to be determined by the operator. 
In this paper a spectral identification procedure is presented which automatically detects and 
identifies representative endmember spectra from HyMap data. The tool benefits from the high 
spectral resolution which yields the potential for the identification of materials. The development 
of the tool consists of three steps. First, a comprehensive spectral library is built using several 
HyMap scenes. These data are necessary to make the tool more robust against effects 
resulting from atmospheric correction, image calibration, age of materials or illumination. The 
next step represents the definition of distinctive features based on the spectral information. This 
process is completely controlled by the computer selecting optimal features for an improved 
separation of materials. Since hundreds of features are defined an appropriate classification 
scheme is developed in the third step.  
First results show that the tool is capable to automatically extract representative spectral 
endmembers from an unknown image scene. Especially roof materials showing a high spectral 
variability are well identified. All materials with a low spectral variability and characteristics are 
barely identified due to small spectral offsets caused by the atmospheric correction. However, 
the classifier is capable to learn new variations and thus will improve by adding more spectra 
from new image scenes in future.  
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INTRODUCTION 
 
Image classification or spectral unmixing techniques are used to determine the surface 
materials and their fractions within the urban environment. Based on this information higher-
order products such as degree of surface sealing, vegetation covers or composition of biotopes 
are derived. This makes it necessary to define spectral endmembers which is a time-
consuming process especially for hyperspectral data. The use of endmember information from 
previous classified images is hardly possible, due to altering spectral characteristics  caused by 
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different illumination, age and image preprocessing. The resulting variability also prevents the 
use of standard spectral libraries as often used within geological applications. Experienced 
users prefer the building of a so called “local spectral library” that contains only spectra from the 
image of interest. These spectra will yield the most accurate results as they include all scene-
specific spectral characteristics. 
In order to simplify the endmember selection procedure, techniques such as PPI (i), N-Finder 
(ii), ORASIS (iii), IEA (iv), and AMEE (v) were developed. These techniques try to select the 
purest pixels based on the analysis of spectral patterns within the image hypercube or in case 
of AMEE in combination with a spatial pattern analysis. Independent of their advantages and 
limitations they all represent unsupervised techniques and the resulting endmember spectra 
still have to be identified in an additional time-consuming process. Such techniques represent 
only a partial improvement. 
In this investigation the effort is made to build a completely automatic endmember selection 
and identification procedure using hyperspectral image data. The focus lies on a first complete 
spectral exploitation of HyMap data in regard to an optimal differentiation of urban surface 
materials. The use of ancillary information e.g. high resolution spatial patterns (2/3D) or thermal 
data would greatly simplify this process but is not part of this study.  
 
 
TEST SITES AND DATA 
 
To determine the limitations of material identification it is necessary to know the spectral 
variability of urban materials. For this purpose spectra were collected from 6 HyMap scenes 
covering the cities of Dresden and Potsdam, Germany. The data were recorded during flight 
campaigns carried out by the DLR (Deutsches Zentrum für Luft und Raumfahrt) from 1999 to 
2004. The pixel size varies between 3-6 meters. Atmospheric correction was performed by 
ATCOR 4 and an additional program and optimised using field spectra within an empirical line 
correction. More than 30.000 spectra were extracted as training data from five HyMap scenes 
while the sixth scene serves for the extraction of control spectra. The resulting spectral library 
includes material specific variations and data processing effects. The used materials are listed 
in Tab. 1. 
 
Table 1: Surface categories and materials used for endmember detection. 

 
roof materials tiles (new), tiles (old), concrete, aluminum, zinc, copper, PVC, 

polyethylene, glass, plexiglass, bitumen bright/dark/red, tar-paper, 
schist, vegetation, gravel, facade, one still unknown material (other) 

fully sealed 
materials 

concrete, asphalt, tartan track, synthetics 

partially 
sealed 
materials 

cobblestone pavement, concrete, red /dark loose chipping trails 

bare ground sand, soil 
water river, pond, pool 
vegetation deciduous trees, coniferous trees, lawn, meadow, dry grass, field 

tilled, field untilled, fallow 
shadow falling on vegetation and non-vegetation 
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IDENTIFICATION APPROACH 
 
Determination of material specific features 
 
The spectra of the training library are used to build a classification system. First, material-
specific features have to be defined that allow an optimal separation of materials. They will 
serve as the classification input and help to estimate the classifier’s parameter set. Fig. 1 
shows selected spectra of polyethylene. Their strong variability excludes the use of pure 
reflectance values which are used in most remote sensing studies. Therefore, numerical 
features will be used (e.g. ratios, absorption depth, coefficients of polynomial fit) that minimize 
the spectral variability for an optimal identification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Selected spectra of polyethylene. 
 
The problem is now to determine these features. Due to the complexity of this task this process 
is completely carried out by the computer. To exploit the full potential of the HyMap spectra 
more than 128.000 different features such as means, stdevs, ratios, areas, polynomial 
coefficients and RMS of line and curve regression, positions and depths of absorption and 
reflection maxima are calculated for each spectrum of the training data. Only neighbouring 
bands with a varying spectral position and number (2-126) are used for the calculation. During 
this process a preselection of significant features is already performed. Each feature is 
evaluated towards an optimal separation of two different materials. Only the best 20 results of 
each feature type and material combination are stored in a matrix structure. 
The best 1000 features are finally selected for an optimal separation of all materials. An 
appropriate solution of this highly complex optimisation problem is achieved by applying the 
following iterative procedure: the first feature is selected that allows the best separation 
between two materials. The next feature should not correlate with the first one to improve the 
separability. This requirement can be fulfilled by the analysis of the confusion matrix classifying 
all training spectra based on the first feature. Tests showed that a classifier such as the 
parallelepiped classifier is well suited for this task due to a rough approximation of the classes 
in the feature space. This allows a further differentiation of best features that is not possible 
with high advanced classifiers. Such techniques evaluate much more features as absolutely 
perfect for separation. The material combination within the matrix that shows the lowest 
separability is identified. The corresponding feature with the best separation for this 
combination is selected as the second one, because it shows no correlation to the first one. 
Then a new confusion matrix is calculated based on the first and second feature and the third 
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feature is selected in the same way. This process is stopped until the maximum number of best 
features (user-defined) is reached. To exclude infinity loops a threshold is necessary to 
eliminate material combinations from the optimisation procedure that cannot be separated after 
20 iterations. 
 
Classification system 
 
The classifier must be able to process a very high number of features with high accuracy. 
Another requirement is that the algorithm should be restrictive towards unknown spectral 
variations of materials and declare them as unknown. However, it should also allow the 
incorporation of new spectra that will improve the accuracy and enhance its applicability to new 
image scenes. This is very important since only 5 image scenes are used in this investigation 
containing a subset of possible spectral variations. 
These requirements favour the use of a parallelepiped classifier. Although it shows a limited 
separability in low dimensional feature spaces, it greatly benefits from the high number of 
features that exclude most other techniques. Additionally, the use of feature values instead of 
pure reflectance values represents a problem for most classifiers due to their extreme different 
range. A high number of features improves the separability of most materials, but there still 
exist exceptions of spectra that are correctly classified as different material classes. To reduce 
this error, the classification scheme is extended (Fig. 2). All ambiguous pixels (e.g. U) are 
reclassified using two spectral subclasses of each material (A1, A2, B1, and B2) that were 
defined by a k-means clustering. If no distinct result is achieved, this process is continued using 
4, 8, 16, and so on subclasses. The use of a high number of subclasses increases the 
accuracy of the classifier since the feature space is subdivided more precisely compared to the 
material’s distribution. Few pixels that still fulfill the requirements of more than one class will be 
marked as ambiguous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Modified parallelepiped classification scheme using subclusters on different levels. 
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Object analysis and hyperspectral clustering 
 
This classification system is used to identify pixels in an unknown image scene. The use of all 
classified pixels as endmembers for further image processing is not possible due to their high 
number. In a first step only objects larger than a material specific minimum size (3-30 pixels) 
are considered as significant and thus accurate. Smaller objects probably include a higher 
fraction of mixed pixels. The position of the detected materials is used to compute 
representative endmember spectra from the HyMap scene. Cluster algorithms can be used to 
identify important sub-categories in the multidimensional scatter plot of each material. In this 
approach, a cluster technique was used which minimizes the number of meaningful subclasses 
and optimizes gaussian distributions (vi). The algorithm uses a multivariate test to check the 
normality of the single subclusters. It also directs further cluster splittings in the high 
dimensional feature space. The maximum number of subclusters varies between 5-20 
depending on the spectral variability of the material. It also has the advantage of minimizing the 
influence of sparely miss-identified pixels. 
 
 
RESULTS AND OUTLOOK 
 
The new endmember identification tool was tested using another HyMap image covering a 
subset of Dresden, Germany (Fig. 4). Within this procedure the materials of about 6 % of the 
image pixels were identified. For evaluation purpose an accuracy assessment was performed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Dresden: Hymap RGB (bands 109/25/3) and identified pixels. 
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Control regions were marked in the image for all materials and used to calculate a confusion 
matrix. The resulting errors of omission and commission were calculated for these materials. 
Tab. 2 contains the means of all materials. 
 
Table 2: Accuracy assessment of endmember selection. 
 
 

 
 
 

 
 
The errors of omission and commission cannot be interpreted in the same way as for a 
supervised image classification due to different objectives. Within a classification the most likely 
material is selected based on high accuracy training data. The objective of the presented 
identification procedure is to extract such training data. These data approximate only a 
representative cross-section of the image characteristics. This means that a high omission can 
be partially tolerated as long as suitable spectra are identified. However, a low commission 
error is more important describing how many identified spectra are miss-identified. 
The omission of 94.8 % means that only 5.2 % of the control pixels were identified (producer 
accuracy). The best results (10 - 50 %) could be achieved for materials that include a high 
degree of spectral variation such as most roofing materials (tiles, metals, and synthetics). Other 
materials are barely identified (< 10 %). This problem can be explained by smaller spectral 
offsets induced by the atmospheric correction. This new variations still exceed the variations 
known by the classifier so far. A good example represents the water classes with 0.1 % 
identified pixels. In contrast, these offsets show a minor impact on the identification of spectrally 
variable materials. To improve the identification accuracy in future, the system has to consider 
new variations, because the used 5 HyMap scenes still reflect only an excerpt of possible 
spectral variations. In a second test the control and training data were added and used to 
define a new identification system. The resulting omission and commission error of 0.0 % 
proofs the capability of the system to adapt. 
For the more important commission error an average value of only 1.9 % could be achieved 
representing an excellent result. The maximum values (3 - 25 %) can be found within roofing 
tar, shadow, bright bitumen and red loose chipping trails that possess similar constituents as 
other materials. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Selected endmember spectra representing polyethylene (left) and water (right). 
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Based on the identified spectra representative endmembers were calculated using the cluster 
algorithm. Fig 4. shows exemplary selected endmember spectra representing polyethylene and 
water. Polyethylene is a highly variable material and several typical spectral variations were 
extracted. Water is highly problematic, but the extracted endmembers allow an overall good 
classification of water pixels. Altogether 190 spectra were identified. Such a high number of 
endmembers can be used e.g. in spectral unmixing techniques as described in vii and viii. 
Missing endmembers have to be determined by e.g. a standard classification using a threshold 
defining classes with a high likelihood. A first test shows that about 79 % of the image pixels 
were well classified. The remaining unknown pixels, forming larger areas, represent candidates 
for new endmember spectra. These already promising results will be improved including 
additional HyMap scenes in future. Further improvements can also be expected by the 
incorporation of thermal data as provided by the new airborne sensor ARES (ix). 
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