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ABSTRACT

Recently, about a quarter of a million land cover data collected through the LUCAS project, at
systematically pre-defined sample points, became available. These data paved the way, through
an up-scaling process, to generate reference crop-masks (maps) covering systematically the whole
territory of the EU, as e.g. required for improved crop monitoring (MARS project; requiring what is
where maps), setting a benchmark for future change specifications, or to support annual surveys to
establish variability in crop areas planted and to subsequently generate improved annual crop area
statistics.

For the process of up-scaling, the point data required to be correlated with a classified spatial
product, generated from hyper-temporal imagery that was assumed to have captured both spatial
as temporal variability of actual land cover. Through the use of NDVI data of the SPOT-VGT
archive, that captured differences in land cover phenology, density, and followed crop calendars at
a 1km spatial resolution this feat could be accomplished. Additional use through data-mining of the
most recent CORINE map of the EU, which specifies where broad land use categories are
practiced, though without specifying the actual crop species cultivated, proved very useful to
achieve a final set of crop maps that adhere to the high producer as user accuracy requirements
set by the authors.

The generated temporal NDVI-profiles that link to areas where a crop is grown, the practiced
cropping calendar can be deduced. Factual survey data on planting and harvesting periods remain
to be integrated into the legends of the produced crop maps to make them truly comprehensive.

INTRODUCTION

Using remote sensing (RS) to monitor and report on the performance of agricultural production is
by necessity crop-specific. Agricultural statistics derived from RS-imagery are often generated and
reported by administrative units. All RS-based data within the administrative areas are then
considered of equal importance. We however all know that the extent of areas cropped to a
specific crop differs considerably from the artificially superimposed admin-boundaries.

MARS bulletins [1] generated by JRC of the EU (Agri4Cast; crop monitoring in Europe), report in
principle at country level the derived yield and production estimates (Fig.1la). When possible,
available masks are applied to discern areas of interest (Fig.1b). Concerning crops, specific masks
are simply not available and when possible the CORINE map [2] is used to produce the required
masks (Fig.1b). Though CORINE reports specific areas for major land use/cover classes, it does
not report within relevant areas where exactly individual arable crops are cultivated (Fig.2). By
class that may differ considerably pending on climate, weather, soil, terrain, available markets and
processing facilities, land rights, economic conditions like costs and prices, plus farm and logistical
specifications. Basically, a farmer decides from year to year which arable crop to grow. Overall, it is
known that within a relatively homogeneous farming area, the mix of crops grown across fields
remains constant, given that changes in given conditions do not alter the annual decision making.
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Figure 1. a: MARS country level forecasts report on wheat yields (© JRC)
b: MARS pasture/forage anomaly report for the EU after applying a mask (© JRC).

Maps that report for areas cultivated, crop-specific cropping intensities (crop-masks) require
specific image interpretation methods plus data by ground observations [3]. Images used to cover
a study area are either single frame or are multi-temporal [4,5,6,7,8]. The goal was often to make
crop area assessments or to prepare land cover maps. Discussions frequently focus on resolution
and scale [9]. Agro-ecosystems however show frequently a higher temporal (seasonal) variability
than a spatial one [3]. This characteristic was in the past poorly used for agro-ecosystems mapping
due to the general lack of high-quality imagery availability. In recent years however, free MODIS,
SPOT-VGT and MERIS data offered the option to study and gain insights in temporal dynamics
due to their almost daily global revisiting frequency. This gain however implied a loss in spatial
resolution: 250m to 1km spatial resolution versus an 8 to 16 day temporal frequency of the
supplied Maximum Value Composites (MVC) imagery.

Traditionally, vegetation monitoring based on remotely sensed data [10] has been carried out using
vegetation indices like the Normalized Difference Vegetation Index (NDVI) derived by dividing the
difference between infrared and red reflectance measurements by their sum; it is an effective index
of photosynthetic active biomass [11,12,13,14,15,16,17,18,19,20]. Several studies indicated the
suitability of temporal NDVI-profiles for studying spatial variability in land cover (phenology) and in
practiced crop-calendars [21,22,23,24,25].

The most common use of hyper-temporal imagery is called ‘anomaly mapping’; an anomaly is
defined by the difference of the current reading versus the average of the long-term readings.
Operational systems [26] are e.g. the Foreign Agricultural Service (FAS) of the USDA, the Global
Agricultural Monitoring (GLAM) of USDA/NASA, the MARS project of the European Joint Research
Centre (JRC), the CropWatch System of the CAS in China, the Famine Early Warning System
(FEWS NET) of the USAID, and the Global Information and Early Warning System (GIEWS) of UN
FAO. All these systems typically do not consider area stratification concepts to monitor predefined
crop-specific strata. This calls for an exploration to improve the established methods so that
monitoring becomes agro-ecosystem specific. A WFP representative [27] worded this as: “This
type of EO information (anomaly mapping) must be combined with other information if conclusions
need to be drawn about possible impacts on rural/pastoral households, like info on land cover, crop
calendars, and household livelihoods.” The argument counts equally for the generation of
agricultural statistics through monitoring efforts as practiced by MARS. In short: Crop monitoring
methods can substantially benefit when methods to prepare good crop-masks become available.
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Figure 2. The CORINE legend [2].

METHOD
Data used

The CORINE Land Cover map [2] for the EU of 2006 as derived through segmentation of ETM+
30m resolution imagery was used. It was made available by the JRC. The map covers all EU-
countries and nominated EU-countries except Greece and Iceland (Fig.3a). Its legend is shown in
Fig.2.

Through the JRC the LUCAS 2009 Land Use / Cover Area Frame Survey was obtained [28,29].
For 23 European countries, it contains for some 230,000 pre-defined (geo-referenced) points, data
that were collected by field surveyors (Fig.3b). The points were spaced at equal intervals of 2km,
following the standard grid of the EU (Lambert Azimuthal Equal Area projection; ETRS spheroid).
Randomly, within accessible areas, actually only about 6-7% of the available 2km-spaced grid
points were sampled. Used for this paper was, besides the locations of all points, only data of the
land cover parameter (LC1) and land use parameter (LU1).

The used SPOT-Vegetation data [38] cover the period 1 Jan.2006 to 31 Dec.2010 (10-day MVC'’s,

36 images per year, 5 years). Provided are DN-values (0 to 255) representing NDVI data (-1 to 1).

Pre-processing steps executed were:

e Only pixels (area-of-interest) of the 23 countries covered by LUCAS were kept (plus pixels
10km across borders plus the whole of Switzerland; Fig.3c).
By pixel (1km-sq) the upper envelop was generated [30,31,32,33] to remove haze & cloud
effects. De-clouding of the received DN-values by pixel was carried out in two steps. Firstly, by
image and pixel, based on the supplied quality record: only pixels with a ‘good’ radiometric
guality for bands 2 (red; 0.61-0.68 um) and 3 (near IR; 0.78-0.89 um), and not having ‘shadow’,
‘cloud’ or ‘uncertain’, but ‘clear’ as general quality, were kept (removed pixels were labeled as
‘missing’). Secondly, a modified version of ASAVGOL [30] as built in TIMESAT 2.3 [31,32,33]
was used to derive the upper-envelop through application of the Savitzky Golay filter [34] on a
pixel-by-pixel basis of the temporal NDVI values. Relatively low NDVI values are assumed
related to haze and undetected cloud cover, while relatively high NDVI values (very few;
outliers!) are assumed caused by solar reflection off clouds.

e Then, to generate an annual representative image-stack, by pixel the median was generated
for each of the 5 annual data repeats.

e The image-stack (now 36 layers) was classified using ISODATA generating classified maps
from 10 to 200 classes [35,36,37], and the 128 classes map was evaluated as ‘best’ within the
set range (Fig.4). Details of this step are provided in the next section.
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Figure 3d shows the territory for which, based on the available data, the required crop maps could
be generated.

a.

Figure 3. Data layers available for the territories of the European Union (EU):
a. Agricultural areas (code=2xx) as mapped by CORINE (2006).
b. Within a: Locations of the 56,221 LUCAS (2009) point observations on cropland (code=Bxx).
c. The classified SPOT-VGT product (128 classes; colors used are random).
d. The intersection between a and c (same colors as c), to be related to b.

SPOT-NDVI imagery classification

The free 10-daily MVC NDVI-images of SPOT-VGT for 5 years [38], constitute an image stack of
180 layers. The stack of NDVI values is extremely data-rich and multi-dimensional. A data-
implosion through classification leading to a 2-dimensional map having classes described by
temporal NDVI-profiles brings out exactly where (spatial) and when (temporal) the major part of the
variability in NDVI is for the area and time-span studied.

Thus, using the ISODATA clustering algorithm of Erdas-Imagine software [39] and all compiled and
stacked NDVI images (36x) many unsupervised classification runs were carried out to generate
maps with a series of pre-defined number of classes. Unsupervised indicates that no additional
data were used or expert's guidance applied, to influence the classification approach. The
maximum number of iterations was set to 50 and the convergence threshold to 1.0. One ‘run’
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performed an entire classification, and was "self-organizing" regarding the way in which it located
the clusters that are inherent in the data; the ISODATA algorithm minimizes the Euclidian
distances to form clusters [39,40]. Of each produced map, of classes generated, the NDVI-profiles
can be presented graphically and matched to their spatial extent. Also their separability statistics
can be retrieved; they indicate how different classes are amongst one-another. A graphical
presentation of these separability statistics is used to select which map produced, having ‘what’
number of pre-defined classes, can be the ‘best’ map of choice. This choice presents almost
always a no-win solution between: (i) keep the number of classes low to gain maximum data-
reduction, and (ii) optimize separability between classes without information loss. Figure 4 presents
this trade-off dilemma faced.
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Figure 4. Average separability statistics, as derived from the iteration to classify (unsupervised) the NDVI-
imagery into 10 to 200 classes. At 128 classes, the positive deviation from the shown trend line (green)
indicates a natural ‘state of balance’ between the variability in NDVI-data and the classification results.

Thus, a preliminary agro-ecological map is realized for the EU that uses both spatial as temporal
information regarding the greenness of the Earth’s surface, therefore stratifying variability in
vegetation abundance and phenology as of crop calendars practiced (Fig.3.c). In fact the map
represents the overall result of geology, landform, terrain, soil, climate plus weather, and land use
on the vegetative land cover. It is definitely an integrated index that captures the variability of the
real situation while not explaining exactly what the true differences are or why they are different.
The intermediate legend consists only of NDVI-profiles that are indicative of when what (which mix)
is where. Considering the low spatial resolution of the input imagery, the NDVI-profiles almost
always represent land cover/use complexes. Only use of additional data will translate the
intermediate legend into a practical and informative legend.

Preparation of the crop maps

The following procedure was followed to generate the required crop maps containing frequency

statistics (=cropping intensity) by map unit:

e The 128 classes SPOT raster map (Fig.2c) was converted to a polygon map with identical geo-
referencing specifications as the LUCAS (2009) and CORINE (2006) datasets, being the
Lambert Azimuthal Equal Area projection (in meters) on the ETRS (1989) spheroid with the
ETRS (1989) zero-datum (false easting=4321000; false northing=3210000; central
meridian=10; latitude of origin=52).

e Through the spatial-join operation in ArcGIS, to each of the LUCAS (2009) point-based record,
the proper CORINE (2006) and SPOT class-identifier codes were added (Table 1).
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e The CORINE (2006) and SPOT maps were intersected, and only map units of CORINExSPOT
combinations where LUCAS stated that crops were grown were kept (Fig.2d). As a result, well-
known SPOT data inconsistencies for areas at very high latitudes became non-relevant.
e From the updated LUCAS attribute table, series of pivot-tables were prepared through the
parse-operation in MS-Excel (Table 1). Frequency counts of LUCAS records by CORINEx
SPOT combination were used to prepare summary tables. Compared by combination were
frequency data of:
¢ (c) land cover (LC1) is equal to one of the cropland codes (code=Bxx; 40 different codes).
¢ (a) land cover (LC1) is equal to any cropland code (code=Bxx) and the land use code (LU1)
and equal to any agriculture, forestry, fishing, mining, or hunting code (code=U1xx). Only
60,614 records qualified (26%; Fig.3b). In total only 33 cropland points fell beyond the Ulxx-
condition.

¢ (I) any LUCAS record (total of 234,709 records).

e Using (c)/(a) and (c)/(l), tables with ratio-data evolved (in %). During made calculations, author-

defined thresholds were set (otherwise the ratio was set to “0”):

e The sum of the (c) count for all SPOT cases by CORINE class must be higher than 5.

e The sum of the (c) count for all CORINE cases by SPOT class must be higher than 5.

¢ The (a) count for any CORINExXSPOT combination must be higher than 10. The count of (I)
was not considered.

¢ The derived (c)/(a) and (c)/(l) percentages must be higher than 1%. Lower values represent
inclusions that are rarely shown on maps.

o To the generated tables, by CORINExSPOT class, the sum of all (¢)/(a) and (c)/(l) values were
added, to denote respectively the ‘tabulation success’ and the ‘unit specific cropping-intensity’.

o The data of the summary tables were then added to the CORINExSPOT map.

e Note: no results were produced for Greece as for the Faroe and Shetland islands. Through
extrapolation, results were however produced for Switzerland, the Balearic Islands and Malta.

Table 1. Tabular data and parse-operations:
a. Section of the LUCAS table to which CORINE and SPOT class codes were added. The CORINE-classes are
reported under ‘code-06’ and the SPOT-classes under ‘gridcode’.
b. The used parse-command in MS-Excel.
c. Section of the parse results with counts for a specific crop (left) and for all crops (right).
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The essential result of tabulating crop-wise the frequencies of LUCAS points by NDVI and
CORINE classes resulted in a table that listed by crop the required cropping intensities (Table 2).
These records were successively linked to the map containing the CORINEXSPOT map units.

Table 2. Section of the frequency table showing by crop, SPOT-class (NDVI) and CORINE-class (Cor-06)
the respective frequency statistics (%) after applying the set thresholds.
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To the CORINExSPOT map also the sum of all (c)/(a) and (c)/(I) values were added to denote
respectively the ‘tabulation success’ and the ‘unit specific cropping-intensity’; Table 3 presents the
(c)/(I) values. Unexpectedly, certain CORINExSPOT combinations displayed that cropping took
place for CORINE classes that were basically considered non-agricultural, i.e.: 112, 321, 323, 324
and 333. The cropping intensities for these units however remained low.
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Table 3. Cropping intensity for each CORINEXSPOT class combination as defined by the fraction
of all crop point counts over all LUCAS point counts for that combination (%; (c)/(l)). The numbers
represent the ‘unit specific cropping-intensity’.
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The unit specific cropping-intensity map ((c)/(1)), e.g. for Spain, is displayed in Fig.5. It shows that
agricultural areas are concentrated to specific regions (orange-red tones), while other regions
contain none (grey-tones) or hardly any cropping (light-blue tones). Consequently, generating
monitoring data for Spain should consider only areas where crops are cultivated, and not be a
general average data compilation/estimation for all areas without using the displayed stratification.
Such stratification should in fact be crop-specific. Figures 8 and 9 show for Spain that within the
cropped areas, still very clear differentiations occur between e.g. where olive-groves occur versus
where rice is cultivated. Further examples of crop-specific cropping intensity maps are shown in
Figures 6, 7 and 9. These maps further confirm that areas differ considerably concerning their
crop-specific relevance.

The scale (resolution) of the displayed maps is based on the used input maps. CORINE is based
on 30m resolution imagery interpretation while the SPOT layer originates from 1km? imagery.
Thus, the shown maps pretend to have a spatial accuracy that is basically over-rated. Accordingly
the generated crop maps must be re-sampled to a 1km resolution on the basis of the weighted
contribution of the concerned polygons within that grid. This exercise is still pending, and only
when completed, the created crop intensity maps will be made available widely through the
internet.

Also the displayed crop intensity data still require statistical screening and validation on the basis
of number of LUCAS points used by CORINExSPOT combination as through the use of external
data sources, e.g. to address the question: does unit size influence accuracy? Till this work is
completed, the generated cropping intensity data remain tabulated results.
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Figure 5. Cropping intensity in Spain and Portugal as defined by the fraction of all crop point counts over
all LUCAS point counts (%). The cropping intensity is specific for each CORINExSPOT class as
specified in Table X.
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Figure 6. Common wheat cropping intensity in N-France, Belgium and SW-Germany as defined by the
fraction of common wheat point counts over all LUCAS point counts (%). The fraction is specific
for each CORINEXSPOT class.
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Figure 7. Maize cropping intensity in N-Italy,Switzerland, and parts of Austria and Hungary as defined by
the fraction of maize point counts over all LUCAS point counts (%). The fraction is specific for
each CORINExSPOT class.
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Figure 8. Olive-groves cropping intensity in S-Portugal and S-Spain as defined by the fraction of olive-
groves point counts over all LUCAS point counts (%). The fraction is specific for each
CORINEXSPOT class.
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Figure 9. Rice cropping intensity in N-Italy, S-Portugal and S-Spain as defined by the fraction of rice point
counts over all LUCAS point counts (%). The fraction is specific for each CORINExSPOT class.

DISCUSSION AND CONCLUSIONS

The CORINE layer differentiates land cover patterns in the landscape that are clearly
distinguishable on high resolution satellite imagery. Such patterns are in the first place based on
spatial homogeneity (heterogeneity) of the infrastructure ‘agricultural fields’ by map unit, and
successively on the reflectance as seen in the imagery. Using imagery-based reference keys, field
data and expert knowledge, interpreters are thus able to distinguish basic patterns that are link to
the classes provided in Fig.2. Differentiations which crops are actually grown, or even an
assessment on the dominant crops cultivated, is not possible through this method unless by unit
hard field data are collected to further subdivide or annotate the used legend keys. On the other
hand, by grid-cell, the differences in temporal NDVI-profiles are related to differences in land cover,
being differences in phenology of natural vegetation or crops grown plus the man-influenced
aspects of the followed cropping-calendars. For the 1km? grids, various mixtures of land covers
(=crops) do occur and as complex they display as a whole specific greenness behavior over time.
Seasonal variability due to weather impacts on this behavior, but assumed can be that taking the
median readings over a 5 year period consolidates the characteristic differences between signals
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of different land cover mixtures as occur in space for the study area. Through ISODATA analysis,
128 different mixtures were differentiated for the EU, and their temporal NDVI-profiles were
assumed correlated to cover-specific (crop-specific) greenness characteristics. As such, such
classes complement information as captured through CORINE and the combination of both could
be assumed proper spatial representations of different crop-areas. Identification of the
relationships between the generated CORINEXSPOT classes and the actual land cover mosaics
they represent is only possible when additional information is available. The LUCAS area frame
survey delivered the needed data, and made it possible to describe the content of the delineated
CORINExSPOT units through ample ground-truth data. Earlier studies already proved successful
use of stratifying areas based on hyper-temporal NDVI data for crop-mapping [3,35,36,37].

Combining CORINE and SPOT information was assumed useful based on the promise that each
contained complimentary (unique) information. Results would thus show that different
CORINEXSPOT classes differentiate land cover mosaics beyond their individual merits. Table 3
displays that this is indeed the case, and that the combined use of SPOT and CORINE allowed the
differentiation needed to make this exercise successful.

The issue of scale is first of all a mapping question, but it also relates to the natural patterns of
crops grown to individual fields in an area. Argued is that farmers decisions creates over years
high variability of crops grown to individual parcels, but that for specific areas, the total area grown
to a specific crop remains more static. Based on that logic, detailed mapping (large-scale) would
become a hopeless exercise. The used 1km? grid resolution of the SPOT layer actually coincides
best to the described requirement that crop-maps must be area specific. For the current exercise,
the aim was clearly not to prepare annual crop maps at field level that require annual updating, but
a reference series of crop-masks that can be assumed static for e.g. a period of 5-years. Changes
do happen to environments (social and bio-physical), and re-creating the prepared crop-masks at a
5-year interval seems thus logical to monitor the impacts of such changes.

Sources of errors concerning the prepared crop-masks relate to the artificial grid of 1km? used for
the SPOT layer, to possible misclassification of various CORINE units (crops are clearly cultivated
in various non-agricultural land cover/use classes; Table 3), and to the non-use of the LUCAS
sample scheme of area-frames leading to less data for smaller CORINExSPOT and ample data for
larger ones. In addition, a major problem remains that the LUCAS data are basically point based.
In case that the selected grid would refer to e.g. 500x500m areas, and the survey did complete
spatial inventories of such areas (=segments), improved crop-area estimates would follow as use
of accuracy statistics formulae developed over time for the so-called ‘double-frame agricultural
survey’ method [41,42,43,44,45,46,47].

This study is not yet completed. The unit-based crop maps need conversion to a 1km? grid
following the standard projection system of the EU, crop-specific maps containing accuracy
indicators that reflect the number of points sampled by unit are required, statistical tests to report
on the merit of the CORINE and SPOT layers must be added, validation of the prepared crop-
maps using external data-sources is needed, and besides all these, also maps on pastures and
grass-lands must be prepared.

The expected use and utility of the prepared crop-maps for the EU is considerable. The MARS
project can directly upgrade their production line by adding weights (crop-intensity data) to the grid-
cells evaluated regarding their performance, so that consecutive administrative area reports can be
generated based on areas that matter. Beyond the EU, clarity must exist that space-time products
can be generated through remotely sensed imagery that reflect the space-time cube that matters to
distinguish land cover and cropping systems mosaics. Using such an area-stratification forms in
turn a basic input to the design of area-frame surveys for successive ground-truth data collection,
legend preparation and statistics generation. This logic not only suits preparation of crop-masks,
but also supports annual surveys to estimate variability in cropped areas as currently carried out by
many countries.
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