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ABSTRACT  

We applied a measure of foliar phenology to interpolate climate statistics and produce a bioclimate 
classification for a vast plain in Argentina, with sparse weather observations. As a measure of foliar 
phenology, we used parameters obtained by modelling NDVI time series with a Fast Fourier 
Transform (FFT) applied to a 9-year time series of NOAA-AVHRR NDVI GAC images. FFT 
decomposes the series into an average signal and two sinusoidal components. Selected FFT 
parameters were mean NDVI, amplitude and phase for a 1-year period. Climate data were annual 
rainfall (P) and mean temperature (T) expressed as Potential Evapotranspiration (PET) estimated 
by an empirical equation (PET= 68.64 T). P/PET ratio was related to FFT parameters by fitting a 
multiple linear regression model with P/PET as predicted variable and FFT parameters as 
predictive variables. The regression model, that explained 92% of the P/PET variation, was then 
applied to the entire selected images (parameters) to obtain a map of the P/PET ratio. The P/PET 
map was compared with existing climate maps and ancillary data to derive a consistent bioclimate 
map. Mean annual phenological rhythm was graphed for each bioclimate by reconstructing the 
yearly NDVI curve. This shows that aridity reduces the contrast between minimum and maximum 
NDVI and that time of maximal vegetation cover varies from January (semiarid) to April 
(subdesert). The proposed method is an adequate tool to extend meteorological data into regions 
where climate data have an uneven coverage or poor spatial resolution. This finding shows that 
each selected FFT parameter was necessary because none was significant by itself. 

INTRODUCTION 

In extensive arid and semiarid regions, very often there is a gap of meteorological data. NDVI time 
series allow indirect detection of climate conditions: Normalized Difference Vegetation Index (NDVI 
= (NIR-R)/(NIR+R) images are strongly related to photosynthetic active radiation (PAR) (1) and 
consequently to the activity of vegetation cover, expressed as foliar phenology (2) and its regional 
changes with climate conditions (3). The response of NDVI data to rainfall has been largely studied 
(4). The strong linear relationship when annual rainfall ranges from 150 to 1000 mm (5) allows 
detection of drought and 'wetter' conditions on Sahelian vegetation for the period 1981-2003 (6). 
The usefulness of NOAA-AVHRR NDVI series in the study of interannual variability produced by 
ENSO events has been demonstrated (7,8). Moreover, in places where rainfall data are sparse, 
the use of NDVI series instead of rainfall data improved the correlations with ENSO indices 
predicting drought onset in Northeastern Brazil four months in advance with 68% success (7). 

This ability of time series of NDVI to express climate conditions has proved to be synthesized by 
Fourier parameters (9,10,11). The Fast Fourier Transform algorithm allows decomposing, for every 
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pixel, the temporal profile of NDVI series in an average signal plus N/2 sinusoidal components, 
with N being the length of the time series expressed as number of images (9, 10). The average 
signal is the mean NDVI for the whole time series, and periodic (sinusoidal) components are 
characterized by amplitude and phase and are associated with a given period, e.g. 9, 4.5, 3, 1.5, 1, 
0.5 years. The amplitude represents a measure of the maximum variability of NDVI at a given 
period, and phase is the time lag between this maximum and the initial point of the series. The 
simplicity of NDVI Fourier parameters allows relating and understanding the effect of rainfall and 
temperature on vegetation units (12) and foliar seasonality (13) in Southern Africa; the mean NDVI 
and amplitude for a one-year period as sensitive indicators of climate variability (11); the 
usefulness of phase image to distinguish spatial and seasonal rainfall variations (14) and of the 
mean NDVI to detect rainfall regimes and climate types (7) in Northeastern Brazil. 

The objective of this paper is to synthesize the methodology applied to a NOAA-AVHRR NDVI 
GAC series of monthly data for 9 growth cycles to fill gaps of meteorological data generating a 
bioclimate map through the P/PET ratio, for a vast plain of Central Western Argentina (15,16). 

METHODS 

Study area 

The study area is the eastern plain of Mendoza (Argentina) that extends N-S for 440 km and is 
100-150 km wide (W-E). It is a sandy plain covered with dryland vegetation: open Prosopis 
woodland and shrub steppe of Larrea spp., Atriplex lampa, etc. (17); 12% of the plain is irrigated 
for fruit trees, vineyards and orchards. Only 14 meteorological stations cover the area and over 
different periods (10 to 55 years). Mean annual temperature varies N-S from 18.7 ºC to 15 ºC. 
Annual rainfall, with high interannual variability (35-67%), increases eastward and southward from 
an average of 155 mm in the north to an average of 403 mm in the south; 78% of rains are 
concentrated in spring-summer.  

Data, methods and procedures 

Satellite data and image processing 

Satellite data is a series of 9-year monthly NOAA-AVHRR NDVI GAC images (7.6 x 7.6 km), from 
July 1982 to June 1991. The series of NDVI images was processed in the Netherlands. There, at 
the National Aerospace Laboratory (NLR) a special so-called Mixed Radix Fast Fourier Transform 
algorithm (FFT) has been developed for the processing of time series of images (9,18,19). N is the 
length of the time series (108 images) and can be factored in the radix numbers 2, 3, 4 and 5 and, 
as the samples are equidistant in time (one month), the FFT algorithm allows decomposing, for 
every pixel, the NDVI series into an average signal plus the N/2 sinusoidal components. The 
resulting images were: mean NDVI for the whole series and the periodic components, i.e. 
amplitude and phase for 9, 4.5, 3, 1.5, 1 years, and 6, 4, 3, 2 months. Among them, the most 
sensitive bands were selected. 

Selection of the most relevant FFT parameters (bands) was made according to the amplitude 
variance contribution of each period to total amplitude variance. Total variance of the time series 
was calculated as the sum of the variances of the individual terms as follows (20):  

Total variance = 


n

l

jamplitude

1

2

2
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where j is each term (period) in the series and n is the total number of terms. The relative 
contribution of each term is computed by dividing the individual variance for each term by the total 
variance. Contribution was calculated only for the periods: 9, 4.5, 3, 1.5,1 years and 6 months.  

Meteorological data 
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Meteorological data used were mean annual rainfall (P) and mean annual temperature (T). The 
P/PET bioclimatic index was applied because it belongs to the synthetic indices that consider the 
climate requirements of vegetation. PET, potential evapotranspiration, i.e. the evaporative demand 
of the atmosphere over plants during a growing cycle, was estimated by the empirical equation 
PET = 68.64T; with T being mean annual temperature in 0C (21). For oases, the average irrigation 
of 800 mm was added to mean annual rainfall to consider actual water availability.  

The limits of bioclimate zones were adapted from Le Houérou (21,22,23) as follows: P/PET 0.06-
0.15 as bioclimate class subdesert; 0.16-0.24 lower arid; 0.25-0.33 upper arid; 0.34-0.41 lower 
semiarid; 0.42-0.50 upper semiarid; 0.51-0.59 lower subhumid; 0.60-0.68 mid subhumid ; 0.69-
0.75 upper subhumid; ≥ 0.76 humid. 

Regression model 

For each meteorological station, the closest pixel was selected and the digital numbers (DN) 
extracted for the selected bands to carry out a multiple linear regression analysis. The stations in 
the oases served to calculate P/PET for both oases and neighbouring drylands. On the borders of 
the oases, the P/PET index was obtained by averaging the indices with and without irrigation. In 
this way, and based on 14 meteorological stations, 27 values of the P/PET index were obtained. A 
multiple linear regression model was fitted between the selected FFT parameters (independent 
variables) and the P/PET (dependent variable) from 27 data. This model was expected to predict 
the P/PET bioclimatic index. "R" statistical free software was used (http://www.r-project.org). 

On a first step a regression model with an Indbi response variable (P/PET index) and explanatory 
variables: mean NDVI, amp1 (amplitude for a one-year period), and phase1 (phase for a one-year 
period) was considered (24). Given the lack of normality in the response variable, it was 
transformed using the Box-Cox procedure (25) to: Indbit=(Indbiλ-1)/λ, where the value for 

parameter   was estimated as 0.4734707. Then, a regression model was fitted under the 

assumptions of normality, independence, and homoscedasticity for the errors εi, i=1,….,27, verified 
through the analysis of residuals. 

Generation of a map of the P/PET bioclimatic index 

The coefficients of the obtained linear regression model were applied pixel by pixel to all three 
bands, mean NDVI, amplitude and phase for a one-year period as X1, X2 and X3 respectively, 
generating the P/PET image where DNs are the bioclimatic index values. The P/PET index image 
was re-codified according to previous limits.The analysis of ancillary data (climate maps, climate 
data, geomorphology, land use, vegetation, etc.) drove to an adjustment of the P/PET classes to 
obtain the proposed bioclimate map. Phenological pattern was modelled for each bioclimate class. 

Phenological pattern (monthly NDVI curve) 

Once the time series is decomposed into its periodic components, the inverse process can be 
performed modelling the monthly NDVI for a year with only those periodic components conveying 
the most information disregarding noise. The resulting modelled curve shows the rhythm of 
phenology and we call it phenological pattern (26).The modelled annual NDVI curve, I(t), was 
calculated using the following equation (12): 

  



N

n

nnn tAtI
1

cos*)(   where: I(t) = reconstructed time series (with t= 1,…12 as first year 

of the series); An = amplitude value; φn = phase value in radians; n = index indicating periods; ω = 
2π/n = frequency; we have considered the frequencies corresponding to periods: 9, 4.5, 3 and 1 
years, in addition to frequency 0 whose amplitude is the mean NDVI value; t = time, 1 to 12 months 
(from July till June). Thus, monthly NDVI was calculated and graphed without the noise introduced 
by very brief periods (4,3,2 months) and without periods like 2.25, 1.8, 1.5 years, etc., with no clear 
phenologic information and little contribution to the observed NDVI signal. The contribution of the 
six-month period was negligible for the plain and was not used (15). Each curve corresponds to 
one pixel of the represented bioclimate class.  

http://www.r-project.org/
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RESULTS  

Fast Fourier Transform components 

One hundred and eight images were obtained from applying the FFT algorithm. The one-year 
period contributed the most to total amplitude variance (43 to 86%), except for the northern arid 
plain (19-22%), expressing a single growing cycle a year. Here, the contribution of the 9-year 
period was dominant (52 to 56%) owing to high rainfall variability reflecting rare events only once 
over the 9 cycles. Contribution for the 4.5 (1-17%) and 3-year (2-15%) was higher than for the 6-
month (0-3%). Therefore, only the one-year period was kept. 

Selected FFT parameters for regression analysis were mean NDVI, amplitude and phase for the 
one-year period (Figure 1). The mean NDVI and amplitude images look similar, with the highest 
value for the irrigated oases; natural vegetation shows a N-S humidity gradient. The phase image 
contrasts with the other two, showing low values (short phases) for the oases, which expresses 
that maximum NDVI occurs early in the season, and high values (long phases) for the northern 
plain, where maximum NDVI occurs late in the season. 

 

Figure 1: Images of Fourier coefficients expressed in digital numbers (DN): (a) mean NDVI, (b) 
amplitude and (c) phase for the one-year period obtained from the monthly NOAA-AVHRR NDVI 
GAC series July 1982 – June 1991 for the plain of Mendoza Province (Argentina). 

Regression model 

The multilinear regression model to predict the bioclimatic index (Indbit) showed a proper fit to the 
observed data (p-value: 2.510 x 10-13 for the goodness-of-fit F-test with a statistic of 99.7 on 3 and 
23 DF). This led to an adjusted Multiple R-Squared of 0.9193. The residual standard error was 
1.018 on 23 DF. No single variable was significant by itself (all p-values > 0.10) in the fitted model, 
92% of the total response variation (P/PET) is explained when using all three Fourier parameters 
together. Then, the regression model fitted to data result: 

Ê(Indbiti)= -25.77468+0.27077meanNDVIi+0.29754amp1i-0.05410phase1i I=1,….,27 

Generation of a P/PET ratio map (bioclimatic index) 

By applying the Indbit model to the whole plain, continuous bioclimate information was obtained 
(Figure 2a). Recoding this image according to adapted limits of Le Houérou’s bioclimatic index led 
to a raw bioclimatic map where edaphic influence (irrigated oases, dunes, etc.) masked the 
influence of climate (Figure 2b). This result was clarified with the support of ancillary data and 
through a new recodification and editing, thus obtaining the proposed bioclimate map (Figure 2c). 
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Figure 2: Bioclimate map derived from linear regression. (a) Bioclimatic image estimated from a 
multiple linear regression model (adjusted multiple R2 of 0.9193, p-value <10-12). (b) Derived 
bioclimate map. (c) Final adjustment according to ancillary data, bioclimate map proposed. White 
dots show the location of meteorological stations (Adapted from 15, 16). 

Phenological pattern (monthly NDVI curve) 

For each of the five bioclimate classes the modelled NDVI characterizes the influence of climate on 
the phenological variation throughout a growing cycle. 

CONCLUSIONS  

Linear regression with FFT parameters 

Through the multilinear regression model to predict the P/PET index the three Fourier parameters 
together explains 92% of the P/PET variation; none of them conveys enough information by itself. 
Resutls of this model are comparable to the regression coefficients (0.80 to 0.93) obtained by (12) 
for amplitude at one-year and 6-month periods with the Budyko Aridity index in Southern Africa and 
with (27) who explained 70-80% of the spatial variability in NDVI seasonal extremes for different 
plant functional types through climate indices based on temperature and rainfall. 

Fourier parameters are independent, give complementary information and describe the NDVI 
series in a simple and clear manner. The independence of Fourier parameters helps describe 
climate aspects like spatial and seasonal rainfall variation expressed by phase in Northeastern 
Brazil (14), whereas mean NDVI may express rainfall regimes and climate types (7). Also, mean 
NDVI and amplitude for a one-year period were found to be sensitive indicators of climate 
variability (11). Amplitude at a one-year period gives information on the contrast of vegetation 
cover along the growing cycle; the maximum contrast is in the irrigated oases where water is not 
scarce and the majority of permanent crops are deciduous. The lowest one-year amplitude is 
related to aridity and low plant cover, like in the north of the plain with many species with 
persistent, coriaceous and small leaves. Here, amplitude at the 9-year period presents higher 
values than at the one year period and expresses the interannual variability of rainfall. These 
results are coincident with those for Southern Africa where it was found that amplitude at 9 and 4.5 
years increased as aridity increased (10). High 9-year amplitude was also found for the Acacia 
woodland-bushland of the Kalahari Desert, consistently with high interannual coefficients of 
variation in both rainfall and NDVI calculated for individual sites (13).  

(b) (c) 
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Bioclimate map 

Through this regression model, continuous bioclimate information on the plain was produced this 
one needed adjustment according to ancillary data to correct for edaphic influences. Here it is clear 
that sudden vegetation cover changes may yield confusing information on bioclimate, such as 
irrigated oasis where water supply transforms arid and semiarid environments, assigning them a 
humid or subhumid bioclimate. The influence of dunes lowers the climate class like in the ‘island’ in 
the SE of the southern plain, which responds to grasslands on gentle dunes. Detailed analysis and 
criteria applied in each case is found in (16). The consistency of the proposed bioclimate map is 
documented by the spatial continuity of classes and their geographical distribution and by its 
coherence with existing climate maps. 

Phenological pattern 

Modelling the NDVI pattern keeping the meaningful frequencies that express the intraannual 
variation at one-year period, and eventually 6-month period like in South Africa, and interannual 
variations (periods like 9, 4.5, 3 years) without the noise of short periods (high frequencies) help to 
understand, describe and compare the average vegetation pattern along areas with different 
climates (12). 

The model of annual NDVI rhythm shows a progression in the maximum NDVI (amplitude) and the 
time it occurs (phase), between subdesert and upper semiarid climate (Figure 3). The amplitude 
increases with increase in humidity and phase is shorted by higher rainfall, varying from January 
(semiarid climate) to April (subdesert climate). Thus, each climate condition has a different 
vegetative expression throughout the year. In our case, there is one cycle per year, since the 6-
month component showed negligible influence on intra-annual variability in NDVI. 

This proposal allows expanding the climate knowledge from weather stations to the entire plain 
through the phenological expression of vegetation (in natural conditions) for this reflects climate 
conditions. The proposed bioclimate classes show a continuous spatial distribution, evidence of 
spatial coherence and class homogeneity, characteristics that reflect the influence of climate. 
When dealing with NDVI as a climate expression, management of vegetation cover (afforestation, 
fires, cultivation, etc.) and geomorphic features (dunes) should always be considered because they 
may modify the climate pattern derived from NDVI series. 
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