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ABSTRACT 
The key goal of this work is to analyze the synergistic effects of multitemporal data fusion for urban 
land cover mapping. In particular this analysis is carried out using multitemporal ENVISAT ASAR 
images and one Chinese HJ-1 optical image acquired over Beijing in 2009. The major land cover 
classes are high-density built-up areas, low-density built-up areas, roads, airports, forests, parks, 
golf courses, grass/pasture, crops, bare fields and water. The methodology used in this research 
including orthorectification, SAR speckle filtering, and object-based classification. The 
segmentation is based on the newly developed algorithm KTH-SEG that utilizes an edge-aware 
region growing and merging approach. Fusion of the various combinations of multitemporal multi-
angle SAR data and HJ-1 data were compared with SAR and optical data alone. The preliminary 
results show that the fusion of ENVISAT ASAR and HJ-1 data performed much better than optical 
data alone or SAR data alone.  The fusion of 4-date SAR data and optical data can achieve similar 
classification accuracy as the fusion of 8-date SAR data and optical data if multi-angle, dual look 
direction SAR data with suitable temporal compositions are selected. Compared to eCognition, the 
KTH-SEG performed better in extracting linear features such as roads and rivers. 

INTRODUCTION 

The increase in urbanization that can be observed in China and other countries around globe 
causes drastic changes in the surroundings of the regions where mega cities are growing (1 & 2). 
This raises the need for good monitoring, which can be achieved by means of remote sensing and 
land cover classification. 

Past studies have demonstrated that SAR and optical data provide complementary information 
thus improve the classification accuracy (3 – 5, 6). SAR can also overcome the problems such as 
cloud coverage and haziness when optical images are unavailable due to weather conditions (1, 3 
– 5, 7). The benefits of object-based image analysis are also shown in various studies (5, 9 & 10), 
hence we decided to apply image segmentation prior to classification. Classic approaches to 
segmentation include thresholding techniques, edge detection and region-based approaches (11) 
and more recent approaches often combine several of those, e.g. edge-detection and region 
growing (12 & 13). Since those are based on simple examples of only a few objects further 
development is needed to adapt to very complex urban scenes from SAR and optical imagery. 
Thus, the overall objective of this research is to investigate multitemporal SAR and optical data for 
urban land cover mapping using an object-based approach. 

 

STUDY AREA & DATA DESCRIPTION 

In this study the capital of China, Beijing is selected as an example. The area has already 
undergone significant changes during the past decades (14). The 6th ring road around the city is 
the approximate boundary of the area analyzed of roughly 50km x 55km. The SAR data is from 
ENVISAT’s ASAR sensor (C-Band) and the optical image is taken from HJ-1B (15). Both sensors 
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deliver images in 30m resolution. Most of the SAR images were acquired in dual polarization. 
Table 1 provides an overview of the SAR and optical data.  

 
Table 1: Overview of SAR and optical images. 

Satellite Sensor Band Beam Mode Orbit Observation Date 

Envisat ASAR HH/VV IS2 A 2009-05-17 

Envisat ASAR HH/VV IS2 D 2009-05-27 

Envisat ASAR HH/VV IS4 A 2009-06-08 

Envisat ASAR HH/VV IS6 A 2009-06-11 

Envisat ASAR VV IS7 A 2009-08-04 

Envisat ASAR VV IS7 A 2009-09-08 

HJ-1B CCD2 B, G, R, NIR     2009-05-12 

METHODS 

The overview of the methodology used in this research in shown in Figure 1.  The methodology is 
divided into three major phases, the pre-processing, the image segmentation, the classification of 
those segments. 

 
Figure 1: Overview of the methodology. 

 

Image pre-processing 

All SAR scenes are first of all orthorectified based on the satellite orbital model and a DEM from 
SRTM in 3” and then automatically co-registered using NEST 4B. Additionally a multi-temporal 
speckle filter is applied on the co-registered SAR image stack and the result is compressed to 8 bit 
by a 95% histogram clipped linear scaling function. The optical image is manually co-registered to 
the SAR image stack after orthorectification using PCI Geomatica 2012 SP2 Ortho-Engine.  

Image segmentation 

The segmentation is mainly carried out using our own edge-aware region growing and merging 
algorithm KTH-SEG which is implemented in JAVA.  For comparison, the best data combinations 
were also processed using eCognition 8.7.2. KTH-SEG uses both region growing and merging and 
a simple edge-detection scheme. The edge detection is first performed on each input band 
individually by first enhancing the contrast in the band using histogram equalization and then 
applying a 5x5 Sobel-filter. The gradient magnitude images are then thresholded with a 90% 
margin to derive binary edge images. Those binary image layers are fused using a majority voting 
where only edges that appear in the majority of bands from one sensor are kept. The results of all 
sensors are then merged with a logical OR-operator. 

With this information the region growing can be initiated. The growing is performed separately on 
edges and off edges. The homogeneity that is used for finding the best pixels and segments for 
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growing and merging is based on the weighted sum of two measures. Those are for the spectral 
part the change of mean due to a possible merge and for a more texture orientated feature the 
change of standard deviation. Both measures are averaged over all input bands. The growing is 
limited by the minimum segment size which is given as a parameter. The growing phase is 
followed by a two-step merging phase. The first step is merging mutually best fitting segments 
based on the homogeneity criterion and limited by the maximum segment size and the second step 
is merging segments on basis of threshold of the homogeneity value of two segments. The 
threshold is automatically derived from the average homogeneity of all neighboring segments. 
Finally those segments still below the minimum segment size are merged to their best fitting 
neighbor. 

Image classification 

The classification is performed using a support vector machine, which showed to be suitable for 
the task in e.g. (16 & 17), trained in a semi-supervised manner. It is called semi-supervised since it 
is only necessary to select one set of training areas. This initial set is then applied to all sets of 
segments from all the different combinations of SAR and optical data. This is achieved by 
overlapping the labeled training areas with the segments and using always the segment with the 
biggest overlap as the training sample for the individual classification. 

The SVM used is based on a Radial Base Function Kernel and hence needs two parameters to be 
set, the general penalty value C and the RBF specific parameter gamma. These parameters are 
found automatically using a grid search approach. The performance of each pair is here evaluated 
by a five folded cross-validation within the training data. The best pair is used to train the machine 
and predict the whole dataset of segments using this machine. The one against one approach is 
used to adapt the SVM to the multi-class case. The java implementation of LibSVM 3.12 is utilized 
to integrate classification capability into KTH-SEG. The segments created from eCognition are also 
imported into KTH-SEG for classification purposes. This guaranties a fair comparison. The features 
used in the SVM are the mean and standard deviation within each segment of each band. 

Accuracy assessment is performed against another set of testing areas. Confusion matrices are 
derived and key indicators of quality such as the kappa value and overall accuracy are calculated.  

RESULTS 
First, a large no. of different combinations of multitemporal, multi-angle SAR scenes were 
compared.  The selection of SAR combinations were based on a good coverage of the vegetated 
season, and as many as possible different beam modes. Additionally the first two scenes were 
available in ascending and descending orbit and very close in time, which also gave possibility to 
make a few comparisons with different orbit configurations. The best two results were then 
selected for fusion with the optical image and re-processed.  For validation purposes, the best 
result was also processed using eCognition for the segmentation as an additional benchmark for 
assessing the quality of the segmentation from KTH-SEG. The complete list of results can be 
found in Table 2. All KTH-SEG results were processed with 40 pixels as minimum segment size 
and 4000 pixels as maximum segment size. The weighting between spectral and texture criterion 
where equally set. For the eCognition processing, standard settings, as seen in many studies were 
applied. The shape criterion was set to 0.9 and the compactness 0.5. The scale was selected in a 
way that the no. of segments is comparable to the no of segments from KTH-SEG processing 
~146k. Scale 25 has slightly less segments ~104k and 20 slightly more~156k. 
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Table 2: Combinations of prepared image stacks and classification accuracy achieved; Red – best 
result with all images used; Green – second best result with reduced no of images; Yellow – 
comparison with eCognition results using scale parameter 20 and 25. 

May 
17 

May 
27 

June 
08 

June 
11 

Aug. 
04 

Sept. 
08 

May 
12 

        

IS 2 A IS 2 D IS 4 IS 6 IS 7 IS 7 HJ 1 Avg. Ac. Over. Ac. Kappa Name 

x x           42.59 47.29 0.41   

  x   x       44.33 48.32 0.42   

  x     x x   46.16 50.55 0.44   

    x   x x   50.07 53.40 0.48   

    x x       50.61 53.90 0.48   

x x   x x     50.85 54.47 0.49   

      x x x   50.91 53.08 0.47   

  x x         52.08 54.56 0.49   

x   x x x x   52.11 54.43 0.49  Asc. Only 

 
x x x x x   53.38 56.85 0.52  Asc. Dsc. 

  x x x x x   53.69 56.86 0.52   

  x   x x x   54.36 56.52 0.51   

  x x   x x   56.55 58.96 0.54  SAR Red. 

x x x x x x   63.83 65.14 0.61 All SAR 

  x x   x x x 72.08 74.12 0.71 Fusion Red. 

x x x x x x x 75.30 75.45 0.72 Fusion All 

x x x x x x x 66.75 67.92 0.64 Scale 25 

x x x x x x x 69.79 70.51 0.67 Scale 20 

            x 70.66 70.58 0.67 Opt only 

The first thing we found from those results is that the more images used, the better the final 
outcome of the classification. This is valid both for the SAR data alone as well as when fused with 
the optical data. But when selecting carefully it is possible to reach almost as good results with less 
data available at least when fusing the SAR data with the optical data. However when just using 
SAR data the drop in accuracy is much bigger (compare the first green and red rows with the 
second green and red rows in Table 2). In this study SAR data could clearly complement the 
optical data, even though SAR alone yielded slightly less classification accuracy. The main reason 
for the lower SAR accuracy was that the training data for  pasture/crops and bare fields were 
selected based on the May 12 HJ-1 data while in SAR images bare fields were converted to 
pasture/crops and vice versa throughout the growing season. Further, it should be noted that both 
SAR and optical data have very different characteristics and hence the inaccuracy of the results is 
very different as can be seen in Error! Reference source not found.. There we can see in the 
right encircled area an example of the new terminal on Beijing International Airport. This could 
easily be identified as a building using SAR data (B) but was found to be bare soil when using 
optical data (E). In the direct neighborhood of the building and in the encircled area in the lower left 
corner a problem of the SAR (B) classification becomes evident, the confusion of low backscatter 
classes like water, airport, golf courses and roads. These where much better separated, when in 
direct neighborhood, from the optical (E) result. When looking at these areas in the combined 
result (C) it is evident that both issues are mostly resolved and hence yielding a good synergy of 
the data fusion. In (F) the best classification result based on the segments from eCognition is 
shown. The accuracy of the eCognition result is around 5% below the best result from KTH-SEG. A 
possible reason for this could be that due to the edge detection the segments of KTH-SEG find 
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better boundaries especially when small almost linear features like roads and rivers are extracted 
(see river to golf course in the left encircled area in C and F).  

 Figure 2: Beijing international airport – classification comparison; A – SAR sample; B – All SAR; C 
– Fusion Red; D – optical sample; E – Opt only; F – eCognition Scale 20 (for naming see Name 
column in Table 2) 

In general the road segments in (F) often have a bigger width than in (C). Another more general 
impression was that the segments in eCognition could find large homogeneous areas like crops 
better but often failed to find good boundaries between the urban classes of high and low density 
as well as roads. From the results in Table 2marked in yellow, it can also be seen, that a higher no. 
of segments seems to yield better classification results when working with images in this 
resolution. 

CONCLUSIONS 
The research shows that the combinations of multitemporal multi-angle SAR data are suitable for 
urban land cover classification, especially when many scenes over the vegetation season can be 
acquired. Even when reducing the number of scenes still good results can be achieved as long as 
the remaining scenes still cover the season well and show a good diversity in terms of incidence 
angles and look directions. It is also evident, that the fusion of SAR and optical data is superior to 
individual classification of those data alone. Finally the results show that the segmentation 
algorithm KTH-SEG works very well on the given dataset and outperforms the leading commercial 
software for image segmentation eCognition in classifying linear features. 
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