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Abstract 

The objective of this research is to assess the multitemporal very high resolution single polarization 
SAR data for urban land cover/land-use mapping using a novel knowledge-based SEM algorithm. 
Three-date RADARSAT-2 ultra-fine beam SAR data were collected over the rural-urban fringe of 
Greater Toronto Area. A modified Stochastic Expectation-Maximization (SEM) algorithm which 
employs an adaptive Markov Random Field (MRF) and the Finite Mixture Model (FMM) was 
proposed for the supervised classification. Several SAR intensity distribution models such as 
Gamma, K, G0 and Fisher were compared using the algorithm. A set of rules according to the 
diversity of the land cover texture patterns was further applied in the decision fusion to improve the 
urban land cover classification. Preliminary results show that the proposed algorithm which 
explores the spatio-temporal information with the knowledge about the ultra-high urban SAR 
textures could produce reasonable classification results. Homogeneous urban land cover maps 
could be obtained while the detailed shape features could be preserved. Although the overall 
classification accuracy of the single polarization data set is not as high as desired, more details 
could be identified in the very high resolution SAR data.  Using unique very high resolution SAR 
textures, rules were designed to effectively improve the classifications of several land cover 
classes thus improve the overall classification accuracy.  

INTRODUCTION 

As one of the most important remote sensing applications, urban land cover mapping has gained 
increasing attentions in light of the accelerating worldwide urbanizations. Within many sensors, 
SAR is known as an excellent observation instrument which is free from the sun-illumination and 
weather conditions. With the improvement of the spaceborne SAR, the urban land cover 
information could be extracted using very high resolution data. 

Although SAR observations in high resolution have become routinely available, there is still lack of 
effective methods dealing for classification of multitemporal high, especially very high resolution 
SAR data, since higher resolution also brings higher variance within each land cover category. To 
this end, object-based approaches (i.e. 1, 2) are often considered as a promising way for high 
resolution data. However, successful employment of such approach depends on proper 
segmentation results which are usually difficult to achieve using the SAR data in complex urban 
areas. On the other hand, several pixel-based contextual approaches (i.e. 3, 4, 5, 6) have been 
proposed to produce homogenous mapping results with high accuracy. In (3), for example, a 
modified SEM algorithm employing an adaptive MRF and the FMM has been identified as an 
efficient approach for supervised urban mapping. 

Besides the contextual information, texture information has also been used to improve urban land 
cover classification.  Particularly, grey level co-occurrence matrix (GLCM) have long been 
recognized as valuable for identifying various urban patterns (i.e. 7, 8, 9), especially when using 
the single polarization data.  

http://en.wikipedia.org/wiki/Markov_random_field
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Therefore, in this paper, a novel pixel-based contextual algorithm is proposed to evaluate the 
multitemporal very high resolution single polarization HH data for urban mapping. Textures from 
the very high resolution SAR images are explored by a rule-based approach for improving the 
classification results. The potential and the limit of using multitemporal single polarization very high 
resolution SAR data for urban mapping are discussed. 

METHODS 

Generally, the proposed algorithm is based on a modified SEM framework as illustrated in Figure 
1. Brief descriptions about each component will be given in the following subsections. For detailed 
information about this algorithm one could refer to (3). In this paper, further improvement is made 
by introducing a rule-based decision fusion process through exploring the SAR textures.   
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Figure 1: Flowchart of the proposed algorithm.  

A. Adaptive MRF 

As an effective way to explore the contextual information, MRF is often employed to model local 
constraints. With this assumption, the neighbourhood influence could be described by a Gibbs 
probability: 

1
( | , ) exp{ ( | , )}.s r s s r s

s

p L L r U L L r
Z

        [1] 

This gives a measure of the prior probability that the pixel s is labelled as Ls when the neighbour r 

in the neighbourhood of s: s is marked as Lr. sZ  is a normalization factor. U(.) represents an 

energy function. Traditional MRF assumes a fixed neighbourhood structures and fixed energy 
function form. Such fixed configuration often leads to an “over-averaging” results and loses the 
structural details. To prevent such negative effects, an adaptive MRF based on an anisotropic 
Potts model is proposed by adaptively selected the neighbourhood shapes and the impact of the 
MRF analysis. The best neighbourhood shape which is assumed to have the lowest standard 
deviation will be selected from the five candidate templates as illustrated in Figure 2. 

 

Figure 2: Candidate neighbourhoods for adaptive MRF.  

Moreover, an adaptive energy function is given as: 

( | , ) ( (1 ) ( )).
s

s r s s s r

r

U L L r b L L


  


         [2] 

where   is the Ising-Potts model impact. ( )   is the Kronecker delta function. bs measures the 
homogeneity of the neighborhood s . The calculation of bs could be found in (10).  
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B. Spatial Variant FMM 

FMM is commonly used to represent the heterogeneity of the observations. FMM assumes each 
datum is a mixture of a finite number of latent classes. The weight of each class is measured by 
the normalized probabilities. By FMM, the Probability Density Function (PDF) of an intensity 
observation I at location s is expressed as: 

1

( ) ( | )
g

s i i s

i

f C f I


        [3] 

where i  is the prior probability of class i in g classes. According to the spatially variant FMM (11), 
it could also be represented by the MRF prior probability. ( | )i sf I   is the likelihood of the intensity 
observation for class i with the model parameters denoted by . For simplicity, the likelihood of 
multitemporal observations was modelled as the product of the PDFs from each date intensity 
data. Therefore, the mixture model density function could be rewritten as:  

1
1 1

( ) ( | ) ( | , )( ( | ))
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          [4] 

Where ( | )it st itf I  is the PDF of the intensity distribution of class i on date t. it are the 
corresponding distribution parameters. stI  is the observation of the date t. m is the total dates. 

C. Contextual SEM 

To estimate the distribution models in the clustering process, SEM algorithm is often employed. 
Indicating the iteration index by the superscript k, the proposed contextual algorithm could be 
described as follow: 

Initialization: estimating the initial intensity distribution parameter 
0
it of each class in each date 

according to the training samples. The initial MRF prior probability is equally set with 1. 

E (Expectation)-Step: for each pixel s, calculate the MRF probability ( | , )k

s r sp L L r   based on the 
classification of the last iteration and update the posterior probabilities for each class i by 
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S (Stochastic)-Step: according to the posterior probability k
si , randomly label the current pixel. After 

all the pixels, a new map is generated with the pixels classified into g class 1{ , , }k k
gQ Q . 

M (Maximization)-Step: update the intensity distribution parameters 
1k

it


 with the pixels belonging 
to the class group k

iQ for each date.  

Such E-, S- and M- steps form an iteration cycle, and runs until the convergence point is met. To 
prevent the degenerate problems, a learning control scheme based on the similarity measure is 
further provided in the M-Step. Details about such algorithm could be found in (3). 

D. Texture Enhancement Scheme 

Through analysing the GLCM textures of the very high resolution SAR data, we have found there is 
obvious difference between the urban and non-urban area by using the GLCM 2nd moment 
parameters.  And the GLCM dissimilarity could be an efficient indicator for distinguishing the low-
density (LD) and high-density (HD) areas. Such GLCM texture differences for identifying the urban 
patterns from the very high resolution data are found even more significant than that from the high 
resolution data. Moreover, the temporal characteristics of the GLCM textures are noticed for 
classifying the forest and crops. For example, the GLCM 2nd moment of Jun. 25 SAR is better to 
differentiate the forest and crop2. And the GLCM Mean ratio of Sep. 02 to Jun. 25 SAR is useful to 
separate the forest and crop1. Based on such knowledge, a texture enhancement scheme is 
proposed as illustrated in Figure 3. 
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Figure 3: Texture enhancement scheme.  

First, each pixel is assigned to the built-up and non-built-up areas. For the built-up area, the FMM 
only includes the LD, HD classes. For the non-built-up area, the other classes are counted in. 
Therefore, the latent finite class group is g={built-up classes} or {non built-up classes} in the above 
mentioned situations. The texture based decision is fused with the posterior probabilities [5]. For 
the two classes which could be further differentiated by certain texture information, i prefers the 
smaller texture value, but j prefers the higher texture value, the new posterior probabilities are 
given as: 
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DATA AND EXPERIMENTS 

Three-dates RADARSAT-2 ultra-fine beam C-HH SAR data with the nominal pixel spacing about 
three meters were collected over the rural-urban fringe of Greater Toronto Area in Jun. 25, Aug. 12 
and Sep. 05, 2008. They are all in ascending orbit with similar incident angles (30.6-32.0°). The 
images are first orthorectified and then followed by a multi-look process with a 4x4 window. The 
pixel spacing of the final prepared images is 8 x 8 meters. The major land cover classes were high-
density built-up areas (HD), low-density built-up areas (LD), grass, golf course, forest, water and 
two types of crops. Training samples for each class is about 1600. Test samples were randomly 
selected. Four common intensity distribution models, namely Gamma, K, G0 and Fisher (12, 13) 
were compared in the proposed algorithm which is further optimized with parallel computing in C++. 

RESULTS AND DISSCUSSION 

The very high resolution multitemporal data was evaluated first without the texture enhancement 
rules (Table 1). It was found that the overall classification accuracies for all models are rather poor. 
Over all, G0 and Fisher could produce better results than K and Gamma models with comparable 
time cost. K model cost considerable longer time. G0 and Fisher all had better performance for the 
built-up areas as LD and HD.   Water, grass and crop 2 achieve good classification results for all 
models. However, for any model, the producer accuracy of LD is near 0, which could also be 
observed in the selected result samples by the G0 model in Figure 4. 

By applying the texture enhancement rules, significant improvement could be observed as 
summarized in Table 1 and compared in Figure 4. Such enhancement is more evident for the LD 
class, Forest and crops, as the rules were designed for. Using the texture rules, almost all the LD 
area could be correctly identified, which also improved the user accuracy of the Forest. By the 
rules for distinguishing forest and crops, the producer accuracy of forest and user accuracy of 
crops also increased significantly. The texture strategy also improves the HD class as well. The 
overall accuracy and Kappa were improved significantly. Moreover, such improvement only cost 
very little extra time considering the total time is from 15.7 min without rules to 17.1 min with rules. 
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Table 1: Results using various intensity distribution models and improvement by the rules. “P” and 
“U” are respectively the producer and user accuracy. OA is overall accuracy. 

 Gamma K G0 Fisher G0+rules 

 P U P U P U P U P U 

Water 0.87 0.81 0.88 0.82 0.87 0.85 0.87 0.84 0.87 0.85 

Golf course 0.52 0.55 0.54 0.56 0.63 0.57 0.62 0.55 0.63 0.57 

Grass  0.78 0.69 0.76 0.68 0.75 0.69 0.74 0.68 0.65 0.72 

LD 0.01 0.31 0.01 0.32 0.07 0.49 0.05 0.46 0.92 0.72 

Crop1 0.72 0.48 0.71 0.47 0.69 0.46 0.71 0.47 0.68 0.66 

Crop2 0.88 0.53 0.87 0.53 0.87 0.62 0.86 0.60 0.89 0.90 

Forest 0.50 0.27 0.51 0.27 0.52 0.33 0.52 0.31 0.78 0.63 

HD 0.47 0.83 0.48 0.83 0.62 0.76 0.60 0.78 0.67 0.94 

OA 0.54   0.54 0.59 0.58 0.77 

Kappa 0.46 0.46   0.51 0.50 0.73   

Average Iteration time 2.1 min 3.3 min 2.2 min 2.2 min 2.4 min 

Total time 14.5 min 23.3 min 15.7 min 15.8 min 17.1 min 

 

 

 
Grass 

 

Figure 4: Selected samples of the classification results. Left column: ground truth; Middle column: 
using G0 model without texture rules; Right column: using G0 model with texture rules. 

CONCLUSION 

The proposed Knowledge-Based SEM Algorithm could integrate the spatio-temporal information to 
produce homogenous mapping results with reasonable accuracy. Texture information could be 
effectively explored by the rules to significantly enhance the results with small time cost. Although 
very high resolution single polarization HH SAR data has limited ability for urban mapping, the 
unique very high resolution textures have the great potential to improve urban land cover 
classification. 
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