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ABSTRACT

This paper faces the challenging problem of cloud screening in multispectral image time series ac-
quired by space-borne sensors working in the visible and near-infrared range of the electromagnetic
spectrum. The main objective of this paper is to provide new operational tools for masking clouds in
time series from Earth observation satellites. In particular, we propose a novel multitemporal method
for change detection that maximizes specific changes between two dates while minimizes sources of
errors, such as land-cover changes and co-registration. The feature extraction method is based on
kernels and can deal with non-linear relations between samples at different dates. The effectiveness
of the proposed method is successfully illustrated in a cloud screening application using a Landsat
time series acquired over Albacete, Spain, in 2009. Results show that the proposed method provides
the most discriminative features in terms of cloud detection when confronted with standard PCA,
IRMAD, and advanced nonlinear KPCA. In particular, extracted features with the proposed method
enable automatic cloud detection in multispectral time series.

INTRODUCTION

Time series from space-borne sensors working in the visible and near-infrared range of the elec-
tromagnetic spectrum are an extremely valuable data source. However, processing and analysis of
satellite image time series poses some challenges that can seriously hamper their operational use.
The first basic but important requirement is that all the images that form the series should be perfectly
co-registered, as any spatial mismatch between images would produce erroneous results. The other
factor that has a critical impact on the results is the presence of clouds in the acquired scenes. For
instance, Landsat scenes are globally estimated to be 35% cloud covered [1]. Therefore, an auto-
matic and accurate cloud screening is essential in order to improve the temporal consistency and the
usability of the time series by considering partially cloudy images.

In this context, cloud screening of image time series can be takled as a specific change detection
problem. Most unsupervised change-detection approaches are based on the difference image be-
tween two single dates, which is further processed to obtain the changes [2]. Basically, information
from the diference image is transformed to extract new features where changes can be easily ob-
tained by simple thresholding or clustering techniques [3, 4]. Linear feature extractors have been
extensively used for remote sensing change detection. Among these methods, the most common is
principal component analysis (PCA), which is applied to maximize the variance of the differences. In
order to mitigate problems due to radiometric differences and noise, canonical correlation analysis
(CCA/MAD) plus minimum noise fraction (MNF/MAF) transforms are becoming increasingly popular
in unsupervised change detection [5]. These methods, however, can only deal with affine transforms
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Figure 1: Example of Landsat TM images at four dates. Information about the presence of clouds in
the images is available and it is used to select the anterior (X1) and posterior (X3) cloud-free images
to each cloudy image (X2) to be analyzed.

and additive uncorrelated Gaussian noise, and cannot be easily adapted to find a particular type of
change, such as clouds.

In this paper, we propose a nonlinear feature extraction method that can be easily adapted to find
a specific change of interest in satellite image time series. In recent years, kernel methods have
emerged as an excellent tool to develop nonlinear feature extraction methods [6] and have also
been applied to unsupervised change detection [7]. The proposed method generates nonlinear data
projections that enhance changes between acquisitions due to cloud covers compared with surface
changes between cloud-free images (see Fig. 1).

KERNEL CHANGE DISCRIMINANT ANALYSIS

This section presents a novel kernel method for the nonlinear extraction of multitemporal features
that maximizes specific changes between two dates while minimizes sources of errors such as land-
cover changes and co-registration errors. We propose a formulation in which the difference between
samples from different dates is computed and then a transform that maximizes the signal covariance
of the changes of interest while minimizes the covariance of the changes of no-interest is found.
First, a brief introduction of standard linear and kernel feature extraction methods is given. Then the
formulation for the proposed method, which we denominate Kernel Change Discriminant Analysis
(KCDA), is presented.

Notationally, we are given a set of training feature vectors {xt
i }

n
i=1 ∈ Rd at different time instants, t ,

in an input space of dimension d , i.e. n samples with d spectral channels or bands. This can be
also expressed using matrix notation, Xt = [xt

1, ... , xt
n]>, where > denotes matrix transposition. In a

change detection setup, the difference image between two time instants t = {1, 2} is computed as
X̃ = X̃2 − X̃1, where X̃ indicates the centered version of X, and C = 1

n X̃>X̃ represents the empirical
covariance matrix of the difference data. In this context, linear feature extraction can be carried out
by projecting the data into the subspace characterized by the projection matrix U, of size d × np, so
that the np ≤ d extracted features of the original data are given by X̃′ = X̃U.

Principal component analysis (PCA) projects linearly the data onto the directions of largest variance
[8]. Therefore, to perform PCA, one has to solve:

PCA: U = arg max
U

{Tr(U>CU)} subject to U>U = I, (1)

where I is the identity matrix of size np × np. This can also be expressed, using Lagrange multipliers,
as the eigenvalue problem Cui = λiui (or singular value decomposition of C).
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The main limitations of PCA for change detection are 1) that the same transform is applied to both
X1 and X2, which suggested the use of canonical correlation in MAD and IRMAD methods [5]; and
2) it does not consider the noise present in the input vectors, which suggested a postprocessing
minimizing the noise (MAF) [5].

All these linear methods simply perform a coordinate rotation that aligns the transformed axes with
the directions maximizing a given criterion: in this case, the variance of the difference data distri-
bution. Therefore, they assume that the best extracted features, X̃′, detecting the changes have a
linear relation with the original data matrix, X̃. However, in many situations this linearity assump-
tion is not satisfied, and nonlinear feature extraction is needed to obtain acceptable performance. In
this context, kernel methods are a promising approach, as they constitute an excellent framework
to formulate nonlinear versions from linear algorithms [6]. In addition, previous methods are com-
pletely unsupervised and look for the largest changes, so there is no guarantee that the directions of
maximum variance will find a specific change of interest. In the rest of the section, we describe the
proposed Kernel Change Discriminant Analysis (KCDA) formulation.

Notationally, consider a nonlinear function φ(x) : Rd → H that maps the input data into some kernel
space of very high or even infinite dimension. The data matrix for performing the linear feature ex-
traction in H is now given by Φ = [φ(x1), ... ,φ(xn)]>. As before, the centered versions of this matrix is
denoted by Φ̃. The projection of the input data will be given by Φ̃

′ = Φ̃U, where the projection matrix
U is now of size dim(H) × np. Note, that the covariance matrix in H, which is usually needed by the
different methods, becomes of size dim(H) × dim(H) and cannot be directly computed. However,
making use of the representer’s theorem, we can express the projection matrix as a linear combina-
tion of the training samples U = Φ̃

>A, where A = [α1, ... ,αnp ] and αi is an n-length column vector
containing the coefficients for the i th projection vector. Now the maximization problem can be refor-
mulated solely in terms of the dot product of mapped samples, which is defined by the kernel function
K̃ (xi , xj ) = φ̃(xi )>φ̃(xj ). Note that, in these kernel feature extraction methods, the projection matrix U
in H might not be explicitly calculated, but the projections for an input pattern x∗ are given by:

φ̃
′(x∗)> = φ̃(x∗)>U = φ̃(x∗)>Φ̃

>A = [K̃ (x∗, x1), ... , K̃ (x∗, xn)]A, (2)

which is expressed in terms of the inner products in the centered feature space that, as in all kernel
methods, can be computed via a positive semidefinite Mercer kernel function.

As mentioned before, previous approaches consider a bi-temporal change detection problem be-
tween X1 and X2, and they cannot focus on a particular type of change such as cloud detection. The
aim of the proposed KCDA is to find projections that maximize the variance of differences due to
clouds, which will be observed between the image X1 (cloud-free) and X2 (cloudy), and also mini-
mize any type of land-cover change or co-registration errors, which might be observed between the
cloud-free images X1 and X3. Therefore, the proposed KCDA want to find projections maximizing the
ratio between the variance of the mapped differences from 1 to 2, Φ̃21 = [φ(x2

1− x1
1), ... ,φ(x2

n− x1
n)]>,

and the variance of the mapped differences from 1 to 3, Φ̃31 = [φ(x3
1 − x1

1), ... ,φ(x3
n − x1

n)]>, in H.

KCDA: U = arg max
U

{
Tr
(

U>Φ̃>21Φ̃21U

U>Φ̃>31Φ̃31U

)}
subject to U>Φ̃>31Φ̃31U = I. (3)

This is equivalent to solve the generalized eigenproblem Φ̃
>
21Φ̃21ui = λiΦ̃

>
31Φ̃31ui that can be also

expressed using matrix notation Φ̃
>
21Φ̃21U = Φ̃

>
31Φ̃31UΛ, which is not directly solvable since matrices

Φ̃
>
Φ̃ and projection matrix U have possibly infinite dimension, dim(H)× dim(H).
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Figure 2: Extracted features (first and second rows) and clustering (third row) for the 2009-04-
03 Landsat image (see Fig. 1) using (from left to right) PCA, MAD-MAF, IRMAD-MAF, KPCA, and
the proposed kernel method.

Making use of the representer’s theorem, U = Φ̃
>
21A, and pre-multiplying both sides by Φ̃21 it is

possible to express the same problem in terms of dot products:

Φ̃21Φ̃
>
21Φ̃21Φ̃

>
21A = Φ̃21Φ̃

>
31Φ̃31Φ̃

>
21AΛ→ K̃22K̃22A = K̃23K̃>23AΛ, (4)

where we have defined the symmetric centered kernel matrix K̃22 = Φ̃21Φ̃
>
21 containing the inner

products between any two difference vectors from 1 to 2 in the kernel space, and the non-symmetric
kernel K̃23 = Φ̃21Φ̃

>
31 = K̃>32 containing the inner products between the differences from 1 to 2 and

from 1 to 3 in the kernel space. Then, projections are obtained as Φ̃
′ = Φ̃21U = Φ̃21Φ̃

>
21A = K̃22A.

Finally, a simple but effective technique to reinforce the enhancement of the changes of interest and
the rejection of the changes of no-interest in the extracted features consist in including in the training
set: 1) samples whose changes between image 1 and 2 imply an increase in intensity (probably due
to clouds), and also 2) samples that present any significant change between image 1 and 3 (any
other changes) or belong to the edges of the land-cover regions (where changes are probably due to
co-registration errors).

EXPERIMENTAL RESULTS

A time series of Landsat TM images1 acquired over Albacete, Spain, in 2009 is used to illustrate
the capabilities of the proposed multitemporal feature extraction algorithm. In this work, cloud-free
images were manually selected from the time series by visual inspection and the Landsat TM images
were geometrically and atmospherically corrected.

The selected study area (10× 10 km) is located in the overlap area between adjacent Landsat orbits
in order to get an additional acquisition between two nominal Landsat acquisitions (revisit time of

1Authors want to thank the Instituto Geográfico Nacional (IGN) for granting access to the Landsat data.
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Figure 3: Results for two cloudy images in the Landsat time series using PCA, IRMAD-MAF, and
KCDA. In each panel, first row shows the X1, X2, and X3 Landsat images; second row shows a false
color composite of the three most relevant extracted features with each method; and third row shows
the clusters obtained using k-means with k = 3 and the Euclidean distance over the three most
relevant extracted features.

16 days). These additional images are very useful to better assess changes. The region covers an
irrigated agricultural area (Barrax site), which is characterized by large and uniform land-use units.
The main cultivated crops in the region are: cereals (barley, wheat, corn, and oat), potatoes, sugar
beet, sunflower, alfalfa, and vegetables (onion, garlic, melon, and tomatoes). Hence, a lot of land-
cover changes can be observed during the growing season.

First, we compare the proposed algorithm against PCA, MAD-MAF, IRMAD-MAF, and KPCA. In all the
experiments, projection matrices are computed using a training set of 1000 samples selected from the
images, the RBF kernel is used for all kernel methods, and the kernel width is fixed to the average
distance of the training samples, which is a standard and reasonable procedure in unsupervised
kernel learning methods [6].

Figure 2 shows in its first two rows the two most relevant extracted features, in terms of their corre-
sponding eigenvalues, for each method. Visual inspection of extracted features shows that the other
methods focus on all changes between images. While the first component highlights clouds in all the
methods, land-cover changes and linear features due to co-registration errors. On the other hand,
the proposed features clearly highlight clouds from the background thus improving the discrimination
of the changes of interest respect anything else.

To assess the discrimination power of the extracted features, an automatic detection of the changes
is performed by an unsupervised image classification of the features using the k -means clustering.
Usually, the number of clusters is fixed to k = 2 in order to automatically detect two classes: ‘change’
and ‘no-change’. However, with only two clusters the other methods mix all changes in the same
cluster and only the proposed method isolate clouds in the ‘change’ cluster (results not shown).
Therefore, we increase the number of clusters to k = 3 in order to separate clouds and other changes
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in different clusters. In the third row of Fig. 2, one can see the classified changes for all the methods.
Among the other methods included in the comparison, IRMAD-MAF provides the best results but
mixes shadows and co-registration errors in the ‘change’ clusters. The proposed KCDA method
outperforms all the other methods in finding automatically the clouds present in the scene.

Finally, in order to validate the method in more images, Fig. 3 shows the three most relevant extracted
features (false color) and the automatic classification of changes for two dates. Again, one can
observe that PCA’s components highlight clouds but they are still not well detected. IRMAD-MAF
detects clouds but also shadows and borders due to co-registration errors in the first date; and mixes
clouds with land-cover changes in the second one. The proposed KCDA approach provides more
spatially homogeneous detection maps than the other methods and, although some cloud borders
are missed, it detects all clouds present in the scene.

CONCLUSIONS

This paper presented a novel multitemporal method for change detection that maximizes specific
changes between two dates while minimizes sources of errors, such as land-cover changes and co-
registration. The feature extraction method is based on kernels and can deal with non-linear relations
between samples at different dates. In addition, it presents good theoretical and practical properties
since it represents a simple optimization problem solved through the generalized eigendecomposition
of the kernel matrices, and the only parameter is the width of the employed RBF kernel.

Further work considers extending the application of the method to more than three images and also
to apply it for bi-temporal change detection when only two images are available. We also plan to
learn optimal kernel parameters in an automatic way. Finally, it would be interesting to test KCDA in
more remote sensing applications, such as flooded or burned area detection and, in general, in any
specific change event of interest.
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