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ABSTRACT 

Cloud detection is an important preliminary step in most earth observation procedures, such as 
fire, sea and urban areas satellite monitoring. In this paper we elaborate on cloud detection from 
sequences of remotely sensed images with an aim to improve the accuracy of cloud masks by 
taking into account the temporal relationship between subsequent images. In particular, the 
estimated positions of cloud volumes can be used for constructing an additional temporal prior 
term within the Maximum A posteriori Probability - Markov Random Field (MAP-MRF) approach, 
that, classically, takes into account only the spatial correlation among neighboring pixels. In this 
perspective, FInite Set Statistics Theory (FISST) has been proven to be a powerful framework for 
multi-target tracking of clouds, whose number changes across images due to birth, death, merging 
and splitting phenomena. Its computational effort can be mitigated through the Probability 
Hypothesis Density (PHD) approximation, that permits viable implementations based on Sequential 
Monte Carlo (SMC) methods. The performance improvements achievable through this sequential 
Bayesian approach with respect to simpler algorithms, such as the region-matching one, are here 
assessed on simulated cloud masking superposed on real images acquired by the SEVIRI sensor. 

INTRODUCTION 

An accurate estimation of cloud dynamics by means of remotely sensed images is a very important 
source of information in sounding properties of the atmosphere (1). On the contrary, other 
applications can be heavily afflicted by the presence of clouds (2). Therefore an effective pre-
processing of the remotely sensed scenes devoted to the cloudy/non cloudy pixel classification is 
of paramount importance, thus attracting a large number of scientific contributions (see (3) and the 
references therein).  

The joint use of the Maximum A Posteriori Probability (MAP) framework, which minimizes the 
probability of pixel misclassification, and Markov Random Fields (MRF) (4), that take into account 
the spatial relationship among the neighboring pixel labels, has been proven effective for clouds 
detection (5). In addition, temporal correlation among successive images has been also considered 
(3). In (6) a penalty term properly accounts for previous acquisitions to improve the classification of 
the actual image. In this scenario, a crucial step is the propagation of the label information across 
the image sequence, that is performed by means of a Probability Hypothesis Density (PHD) filter. It 
relies upon the FInite Set Statistics Theory (FISST) and consists in considering only the first 
moment distribution (or intensity) of the posterior distribution (7). The effectiveness of this step 
depends on the particular motion model used to capture the targets (i.e. the cloud masses) 
dynamics, but also on several parameters that are strictly related to the particular implementation 
of the PHD filter, and that jointly affect the classification performances and the computational effort. 
Thus in this work we perform a simulation analysis in order to explore a wide range of possible 
algorithm settings. As a final step, we evaluate the classification algorithm on a real scenario by 
using a sequence of images acquired by the SEVIRI sensor.  

The paper is organized as follows: in the next section we briefly introduce the tracking algorithm 
based on the PHD filter, and its approximation via Sequential Monte Carlo (SMC) implementation 
(8). Moreover we detail the proposed method for embedding the temporal information inside the 
MAP classification framework, with particular focus on the MRF-based techniques. Then we 
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present the performance evaluation, carried out both on simulated data and real images. Finally, in 
the last Section we report final considerations and suggest further lines of research arising from 
this study.  

PROPOSED METHOD 

The method is based on assigning an a priori probability that a given pixel be cloudy, derived from 
tracking cloud masses across the previous images. Practical implementation of this scheme rely on 
algorithms able to follow a variable number of targets, as the  number of clouds may change due to 
events as births, deaths, splits and fusions. Such so called Multi Target Tracking (MTT) algorithms 
involve several peculiar problems, related to the statistical models of said events and to the 
association of observations to targets. Several approaches are present in the literature, as 
surveyed, for example, in (9).  

MultiTarget Tracking based on Random Finite Sets
    

 

A successful framework for MTT problems consists in modeling the target state at instant k  
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as a Random Finite Set (RFS) that associates a set of variable finite cardinality to the elements of 
a probability space. In tracking applications the RFS is constituted by the chosen features (as, for 
example, position and velocity) of the targets present in the scene. In particular, for dealing with the 
non-point nature of clouds, we represent them as circumscribing rectangles (commonly named as 
Bounding Boxes – BB in the image and video processing literature), thus synthesizing the peculiar 
characteristics through the position and velocity of the center and the two length of sides. 
Accordingly, in our two-dimensional formalization of the problem, each vector of the RFS contains 
the six components    
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At instant  the elements of       are the union of the survived targets  the 

spawned targets                     and the newly generated targets           . 

The FISST framework permits to introduce a further degree of randomness also in the set of 

observations. In fact the latter is not restricted to contain just a single observation for each target, 

but, rather, it can include missed and  false measurements. This naturally occurs in the real 

practice where the available data are unavoidably corrupted by clutter.    

In principle, the Maximum A posteriori Probability estimation of the state trajectory can be 

recursively implemented (7); however this procedure is quite impractical and more viable 

alternatives are in order. One method consists in the Bayesian sequential estimation of the 

Probability Hypothesis Density (PHD) of X(k), that accounts for the intensity of the Random Finite 

Set (7). It has the property that, when integrated over a region R, yields the expected number of 

targets present in R, and thus can be exploited to extract the needed positions of clouds. In 

particular, a robust implementation of the Bayesian estimator for the PHD involves a Monte Carlo 

approximation (8), based on particle filters (PF). In this case the PHD of the state 

posterior distribution at time k is represented by a set of support points (or particles)   

and respective weights                     , namely it can be written as 
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The set of  particles at time k is composed by the  particles present at time k-1, 

propagated according to the target dynamical models, and     particles representing the newborn 
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targets. The weights                  are obtained by evaluating the corresponding likelihoods, given the 

current observations (see (6,9) for details).  

 

Pixel classification
    

 

The separation of pixels belonging to cloud volumes from the clear sky is a binary hypothesis 

testing problem. Its solution, under the minimum error probability criterion, encompasses the 

comparison of the posterior density of the two hypotheses, given the available data. The 

classification of a single pixel should not be performed independently from the others, being the 

images strongly correlated. Accordingly, the MAP estimator maximizes the joint a posteriori 

probability of the label set , where I is the number of pixels, and thus is the solution 

of  
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in which  is the likelihood of the image                     and the a priori probability 

of the labels. The latter incorporates the available information regarding the label distribution within 

the illuminated scene and is commonly used to model the spatial dependencies. A successful 

statistical model is based on Markov Random Fields (MRF) that corresponds to a Gibbs density for 

the labels joint pdf (4) 
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is the energy function and includes interactions among groups of pixels, or cliques. The 

widely employed Ising statistical model encompasses only the cliques composed by two adjacent 

pixels, and thus the energy includes second order terms of the kind  
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in which  is the (spatial) interaction coefficient, is the Kronecker delta function and 

the indexes i and j range on the whole image and within a neighborhood Ni of pixel I, respectively. 

Common choices  for Ni is the set of adjacent pixels in the up, down, left and right directions (4-

neighborhood) or the set of all surrounding pixels (8-neighborhood).  

However, the a priori probability is strongly influenced also from the labels distribution at 

previous instants. We propose to take into account this correlation by adding a term derived from 

the tracking step of past images. This penalty function                is obtained from the bounding 

boxes positions estimated at the current time. The most straightforward method (see (10) for more 

sophisticated options) consists in associating, to each bounding box, a rectangle with the same 

center and with sizes augmented by a factor A > 2. A triangular function that decreases from at the 

center of the rectangle to 0 at the perimeter quantifies the required penalty term that is thus 

guaranteed to assume value greater than 0.5 inside the bounding box and smaller than 0.5 

outside. Possible ambiguities in the definition of the penalty term are resolved by taking the 

maximum of the potential values. When including this term into the a priori probability  a desirable 

opportunity is offered from preserving the Gibbs distribution form that allows for efficient 

implementations of the search (4). Thus we choose to insert the penalty function as a further term 

into the a priori energy      
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where     is the (temporal) interaction coefficient, that allows to balance the temporal and the spatial 

interaction contributions. The final expression for the a priori energy is thus the following  
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EXPERIMENTAL RESULTS 

 
We present the results achieved on synthetic images generated by a properly developed cloud 
simulation software. Clouds shapes and radiometry are simulated by means of a two dimensional 
fractional Brownian motion (fBm), as fractals are well suited to mimic natural surfaces. In particular 
we set the Hurst coefficient H  to 0.65 as it is typical for clouds (11). The cloud objects, that are 

identified as the regions of the fBm that exceed a suitable threshold, are superposed on a 
background SEVIRI image. Then they evolve according to the well-known constant velocity model 

(9), that is characterized by an acceleration Gaussian noise with standard deviation S , and by a 

sampling time T. 

Our purpose is to investigate the tracking algorithm effectiveness. So we analyse the 
consequences of a mismatch between the cloud motion model used in the simulator (i.e. the state 
of the nature) and the one used in the algorithm (that is characterized by a standard deviation  ). 

In particular, in the generation of synthetic images we employ a linear state equation with a white 

Gaussian acceleration noise with standard deviation 3S pixels/(sample interval)2 (in the 

following we will use the abbreviation p/si
2). We test the robustness of the cloud tracking algorithms 

with respect of variation of  , that ranges from 0.5 to 20 p/si
2. The pixel values are modeled as a 

product of independent Laplace densities.  

In order to assess the tracking performances, we use the Optimal SubPattern Assignment (OSPA) 
metric, introduced in (12), that is able to quantify estimation errors for MTT algorithms. In Fig. 1(a) 

we show the Mean OSPA (MOSPA) of order 2p  and cut-off parameter 100c
 
 computed for 

three different numbers of particles per target   (i.e. 50 , 1500, 30000) on 50 iterations, each  

     

(a)      (b) 

Figure 1: MOSPA (computed with 2p  and 100c ) (left plot) and Error rate eP  (right plot) Vs. 

acceleration noise standard deviation  measured in p/si
2. For each plot the three curves are 

computed for a different number of particles   for each target and for a simulated dynamic with 

3S  p/si
2.  

t
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composed by 20 frames. It is evident that the use of a value of  greater than S  improves the 

performances mainly for small values of  while, when the latter parameter increases, values 

closer to S  also become influential. To tie the performances of the tracking phase and the 

accuracy of the overall cloud classification procedure, in Fig. 1(b) we present the misclassification 

rate eP
 
that is, in fact, shown to be characterized by the same behaviour. 

In order to better explore the effect of particles, we compute the error rate eP  for a variable number  

 of particles per target (see Table 1), when the motion model is matched to the ground truth 

dynamic, i.e. when 3 S  p/si
2. As expected, the performances benefit from the increase 

of  but also exhibit a saturation behaviour: the improvement decreases with increasing   . On the 

other side one should account for the computational load of the tracking phase which grows 
linearly with   

Table 1: Error rate eP  vs  number of particles   (the noise standard deviation  and the simulated 

dynamic   are equal to 3 p/si
2  ). 

  50 300 1500 7500 30000 150000 

eP  2.024 E-2 1.788 E-2 1.602 E-2 1.476 E-2 1.406 E-2 1.375 E-2 

 

Finally, the algorithm is tested on one real SEVIRI time series. The dataset represents a sequence 
of Central Italy images acquired on 07/21/2008 from 12:15 am to 13:30 am. The tracking 
parameters for this real case are chosen as a reasonable compromise between classification 
performances and computational effort.  

The detection phase is tuned by setting the temporal interaction coefficient t  to 35, while the 

spatial interaction coefficient s  is estimated using a Least-Squares supervised technique 

although others approaches, such as Pseudo-Likelihood estimators, can be used as well (4). The 
result of the proposed algorithms is shown in Fig. 2. In particular in Fig. 2(a) the original image (i.e. 
the last acquisition of the time sequence) to be classified is presented, while in Fig. 2(b) a “naked-
eye” ground truth is shown. The classification is presented in Fig. 2(c): false alarms are shown as 

green pixels and missed detection are red ones. The overall error rate eP
 
is 0.1. 

   

  (a)          (b)     (c) 

Figure 2: Classification using the Central Italy dataset: (a) the original image; (b) the corresponding 
ground truth; (c) the classification results. 
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CONCLUSIONS 

In this paper we report an evaluation of a multitemporal MAP-MRF cloud detection algorithm that 
exploits the time correlation among subsequent acquisitions by means of a powerful tracking 
phase based on a PHD-SMC technique. Both tracking and classification performances have been 
evaluated for different settings of the process parameters. Then an example of classification 
performed on a time sequence of real SEVIRI images has been shown. Future developments of 
this technique will be focused mainly on the particle clustering phase that still remains an issue. 
Investigations on the use MTT algorithms for other applications, such as the oil slicks monitoring, 
are also planned. 
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