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ABSTRACT 

Reconstruction of time series of satellite image data to obtain continuous, consistent and accurate 
data for downstream applications is playing a crucial role in remote sensing applications such as 
vegetation dynamics, land cover changes, land-atmosphere interactions and climate changes. 
Among the numerous methods and models developed to reconstruct time series of satellite 
observations in recent decades, Harmonic ANalysis of Time Series (HANTS) is one of the mostl 
widely used. Many studies based on time series reconstructed with HANTS documented the 
excellent performance of this method.  

In the view of this study, the HANTS algorithm can be divided into two sub-processes, i.e. 
contaminated data identification and series reconstruction based on valid data. This study was 
dedicated to the evaluation of the performance of the latter sub-process. A simulated reference 
series dataset was constructed firstl, and then random gaps were introduced to these reference 
series. We built a look up table for distinct gap conditions by doing statistics on the deviation 
between the reference series and series reconstructed from gapped reference series. The look up 
table was used to evaluate the performance of a global NDVI time series dataset processed by 
HANTS.  

The results show that the size of maximum gap (MGS), the number of loss (NL) and the number of 
gaps (NG) were significant factors in the reconstruction. When NDVI time series were rebuilt by 
HANTS, most of the region north than 400N and mountainous areas of earth show bad 
reconstruction performance, that is, the root mean square deviation (RMSD) could exceed 0.25. 
this can be attributed to the periodical snow cover in these regions. 

INTRODUCTION 

The long term satellite based earth observations have accumulated massive remotely measured 
time series since 1970s, which are playing a more and more irreplaceable role in earth science 
research ranging from ecology (1) to climatology (2) and agriculture (3). However, these time 
series datasets derived from visible and infrared channels are always contaminated by undetected 
cloud, snow or poor atmospheric conditions, which makes the temporal continuity, consistency and 
reliability of the time series of land surface observations less than optimal to meet the requirements 
of applications (4). In this context, researchers have developed numerous methods and models to 
address the problem of reconstructing gap free time series from irregularly spaced observations (5-
9), among which the Harmonic Analysis of Time Series (HANTS) method is used very widely (7, 8, 
10, 11).  

The reconstruction algorithms aim at constructing a time series close to the “true” time series, while 
a reference time series, which can approximate the “true” time series, is needed to evaluate the 
accuracy.  So the reference time series become the key of accuracy evaluation. Several works 
have evaluated the performance of several popular time series reconstruction algorithms in remote 
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sensing. Atzberger (12) proposed a range of quality indicators based on real time series which can 
be a relative evaluation method to illustrate the improvements of rebuilt time series compared to 
original ones but cannot quantify the accuracy of the reconstruction method. On the contrary, 
Hird(13) modelled NDVI time series, which were assumed to be reference series, and then added 
noise at different levels. The performance of filters was assessed as the absolute difference 
between the rebuilt time series and reference time series. Compared to Atzberger’s method, Hird’ 
method constructs a synthetic time series dataset and give the absolute accuracy of algorithms, 
which may be more appropriate for addressing the problem of accuracy evaluation for a specific 
algorithm like HANTS. 

The objective of this study is to evaluate the performance of the HANTS algorithm to reconstruct 
global NDVI data under different gap conditions. In this paper, we give the theory of harmonic 
analysis and describe the two sub-processes of HANTS in the first place, and then the gap issue of 
remotely sensed temporal data is discussed. This is done by using a simulated reference time 
series NDVI dataset. Finally, the accuracy of a time series rebuilt from a MODIS global NDVI 
dataset (MOD13C1) is quantified based on the evaluation results. 

THEORETICAL BASIS 

Theory of harmonic analysis 

Harmonic analysis is the representation of functions or signals as the superposition of basic waves, 
and the study of and generalization of the notions of Fourier series and Fourier transforms. When it 
is used in remote sensing to reconstruct the time series with unexpected biases or gaps, the basic 
formula is  
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Here, y , y ,   and jt  is the original series, the reconstructed series, the error series and the time 

that y is obtained (observed), respectively. For example, time series of MODIS vegetation 
products, e.g. MOD13 and MOD15, are composited to a 4-day, 8-day, 16-day or monthly period, 
so the number of observations in a year, i.e. N, can be 92, 46, 23 or 12. The number of waves with 

different frequency is nf. ia  and ib  are coefficients of trigonometric components with frequency if . 

0a  can be viewed as the coefficient at zero frequency which is the average of the series. All the 

coefficients of trigonometric components mentioned above are derived by minimizing  2| |  globally 

using least square method. The global minimum of   2| |  is referred as  2
min,| | g . Next, the 

reconstructed series, i.e., y , can be determined. 

HANTS is just a harmonic analysis based algorithm. The detail of HANTS has been given by 
Menenti et al. (1993) and Verhoef et al. (1996). In fact, there are two sub-processes involved in the 
HANTS algorithm. One is contaminated data identification process during which the outliers are 
flagged as invalid data during iteration. The other is the process of time series reconstruction 
based on remaining valid data. Not only HANTS, nearly all reconstruction algorithms face these 
two sub-processes. In this context, the accuracy of the reconstruction results for the same original 
series dependent on the accuracy of the two sub-processes. This study focused on the accuracy of 
the second sub-process and we assume that the first sub-process can identify the outliers 
successfully.  
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Gaps in  temporal series of image data  

Figure.1 gives an illustration of a NDVI time 
series at Qianyanzhou station in China 
(mainly grassland and farmland) in 2009 and 
the reconstructed time series. As one can see, 
the MODIS quality assessment (QA) 
information can identify some of the 
contaminated data (P1 and P2), but not all 
(P3). In this case, HANTS identifies all the 
anomalous observations, so QA information 
can contribute a lot but not replace 
reconstruction algorithms like HANTS to 
identify anomalous observations.. 

Generally speaking, the time interval of 
remotely sensed temporal series is constant, 

i.e.  1j jt t  is a const. However, considering 

the effects of clouds, snow or ice cover, bad 
geometry and uncertainty existing in 
algorithms, only the valid values which are 
free of all the effects can be used to 
reconstruct series in normal harmonic analysis 
based algorithms. This is true for HANTS 
algorithm where the final time series is 
reconstructed from part of the raw time series data after a number of iterations. We make an 
assumption that the valid values are or most approximate to the “true” values. For simplicity, we 
refer the series without and with bad quality values as “GVTS” (abbreviation for “Global Valid Time 
Series”) and “PVTS” (abbreviation for “Partly Valid Time Series”), respectively. When PVTS is used 
to reconstruct series, a zero weight will be assigned to bad quality observations, which means the 

bad quality values have no contribution to the resulting time series. In this context, the  2
min,| | g  is, in 

fact, just partially minimized  2
min,| | p . In contrast, the series reconstructed from GVTS reaches a 

definite global minimum  2
min,| | g . Taking  2

min,| | p as an approximation of  2
min,| | g  underlies the 

problem of using PVTS to rebuild time series. As one can expect, the distribution of gaps in a 
series can have significant impacts on the accuracy of the reconstruction as documented by ε in 
Eq. (2). 

In the process of accuracy evaluation, all the attention has been concentrated on  . More 

specifically, we want to investigate the dependence of   on gap conditions for different types of 

time series. To this end, and considering above discussion, one of the most immediate means is to 
compare the time series rebuilt from PVTS with true time series in the same pixels. The true time 
series can be approximated by series rebuilt from GVTS following the assumption mentioned 
above. In practice it is very difficult for a remotely sensed time series to be entirely free of biases or 
gaps when taking into account the fact that 50 to 60% of the global land surface is covered by 
clouds every day. So it is reasonable to design a time series generator to simulate GVTS based on 
the features observed in real time series of variables like NDVI and FAPAR derived from satellite 
observations. Next, gaps are introduced in the simulated GVTS according to different 
configurations to simulate a PVTS. Then the difference, i.e.,   between rebuilt time series from 

GVTS and PVTS is used to evaluate performance of harmonic analysis statistically. Specifically, 
the Root Mean Square  Deviation (RMSD)  value of   is used to describe the variance of  . In 
addition, RMSD is normalized to the average of GVTS, which is the Coefficient of Variation of the 
RMSD, CV (RMSD). 

P1

P2

P3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
D
V
I

DOY

Original Reconstructed

 

Figure 1:An original NDVI (MOD13Q1) series 
and reconstructed series by HANTS at 

Qianyanzhou station (26.7ºN, 115.1ºE) . P1, P2, 

P3 data points are biased data when assessed 
visually. But only P1 and P2 are flagged as “Pixel 
produced, but most probably cloudy” ,  P3 is 
flagged as “VI produced, good quality”. When 
processed by HANTS, all P1, P2 and P3 are 
identified as contaminated data. 
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METHODS 

The flow diagram to evaluate the global 
accuracy of HANTS is given in Figure.2. The 
work could be divided into two parts: firstly, an 
accuracy Look Up Table (LUT) was 
constructed based on the simulated reference 
NDVI series and gap configurations. Then the 
LUT was used to quantify the global accuracy 
of HANTS. 

Design of the time series generator 

The phenological signatures of major land 
cover type can be parameterized using the 
average, variance, phase and primary 
frequency (the number of peaks in one year 
period). Then, such phenological signatures 
can be classified into four distinct patterns: 
evergreen forests, grasslands/scrublands, 
double-cropping agricultural land, and barren 
land/desert. The main characteristics and 
corresponding abbreviations for each pattern 
are given in Table 1. 

Without loss of generality, the NDVI signals 
are simulated as:  
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Here N and U are normal distribution and uniform distribution, respectively. The parameters  e , iA , 

i  and 0A  have random values with the distribution given in Eq. (3) during the generation of the 

synthetic GVTS dataset. This simulated time series is a combination of several low frequency 
harmonic components and a white noise. The value of parameters in Eq. (3) for different shape 
patterns are listed in Table 2. In this context, we assume that numerous simulated GVTS of NDVI 
can fully represent the synoptic character of true global NDVI. 

Simulate the series under different gap conditions 

As mentioned above, the objective of the study is to evaluate the impacts on the performance of 
harmonic analysis under different gap configurations. The problem is how to design the gap 
distribution quantitatively, i.e., how to simulate PVTS under controlled conditions.  

In this study, the size of maximum gap (MGS), the number of loss (NL) and the number of gaps 
(NG) are used to parameterize the gap distributions. Specifically, gaps are introduced in simulated 
GVTS to generate corresponding PVTS by varying these parameters. The number of samples is 
46 in one simulated series in this study. Also in this study, five low frequency harmonic 
components (including the zero frequency) are involved in reconstructing series, so the minimum 

 

Figure 2: Flow diagram of this study. 
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number of the remaining valid values should be no less than 14, i.e. compatible with the nine 
parameters describing the curve and with five being the degree of overdeterminedness. 

 

To allow a proper statistical assessment of performance, a GVTS dataset for each pattern, which 
contains 100,000 time series simulated by the time series generator, is built. Next, gaps with 
random position and random size are introduced in each time series, from which the corresponding 
PVTS are simulated. For each PVTS, MGS, NL and NG can be counted. Then for each shape 
pattern, a new dataset containing 100,000 records is derived. The fields of each record contain 
CV(RMSD) of , MGS, NL and NG. 

RESULTS 

The accuracy of harmonic analysis under distinct gap condition 

In this study, the number of samples in a time series is 46 and the simulated MGS and NL of each 
time series are in the range from 1 to 31. The average and coefficient of variation of four patterns 
are given in Table 2. The mean CV(RSMD) corresponding to different MGS levels and different 
patterns are given in Figure 3 (left panel), and the results for different NL are given in Figure 3 
(middle panel). The CV (RMSD) quantifies the deviation of the rebuilt time series from the 
reference series and NDVI value mainly ranges from 0 to 1.0, so 0.05 can be set as a threshold for 
CV(RMSD) to indicate whether the rebuilt series are acceptable. The larger CV(RMSD) is, the 
worse the accuracy of the reconstruction.  

Considering the overall performance response to MGS, as one can expect, the CV(RMSD) shows 
an increasing trend as MGS increases for each pattern. The M-S pattern has the largest rate of 
increase followed by the profile of M-B, L-L and H-L patterns. When the MGS is larger than 8, 9 
and 12 for M-S, M-B and L-L patterns respectively, CV(RMSD) begins to exceed 0.05. CV(RMSD) 
of the H-L pattern, otherwise it has a low value (less than 0.05). For even larger MGS, the 
CV(RMSD) increases dramatically and rises to 0.4 for M-S pattern and 0.26 for M-B pattern. NL 
shows less sensitivity to CV(RMSD) compared to MGS. CV(RMSD) exceeds 0.05 for M-S and M-B 
pattern when MGS is larger than 13 and 20 respectively. CV(RMSD)  typically is not larger than 
0.06 under all NL conditions for H-L and L-L phenology. CV(RMSE) has an obvious downtrend  as 
the NG increases (see Figure 3 (right panel)), since the larger NG indicates a more uniformed 
distribution of gaps in the time series. 

Table 1: Characteristics and abbreviation for each pattern. 

Pattern Characteristics Abbreviation 

evergreen forests High annual average value, Low seasonal variance H-L 

grasslands/scrublands Moderate annual average, Single seasonal variance M-S 

double-cropping agricultural land Moderate annual average, Bi-seasonal variance M-B 

barren land/desert Low annual average, Low seasonal variance H-L 

 

 Table 2: Value of Parameters in (3) for different patterns. 

Pattern 
1 1,L uw w  2 2,L uw w  3 3,L uw w  4 4,L uw w  ,L UB B  Coefficient of variation Mean 

H-L
* 

0.04,0.06 0.04,0.06 0.01,0.02 0.01,0.02 0.60,0.80 0.055 0.70 

M-S 0.40,0.60 0.00,0.30 0.00,0.15 0.00,0.05 0.30,0.60 0.370 0.45 

M-B 0.00,0.20 0.20,0.30 0.00,0.15 0.00,0.05 0.30,0.60 0.260 0.45 

H-L 0.08,0.10 0.06,0.08 0.04,0.06 0.02,0.04 0.00,0.30 0.110 0.20 
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Quantify the global accuracy of HANTS 

The evaluation results derived above provide a Look Up Table (LUT) of accuracy in fact. This LUT 
is applied to assess the accuracy of the HANTS reconstruction of the Global MOD13C1 
(Vegetation Indices 16-Day L3 Global 0.05Deg CMG) data in 2009. In detail, after the first sub-
process of HANTS, the outliers have been removed and the MGS, NL and NG in the series can be 
calculated. Then the accuracy of a specific reconstruction result can be determined using the LUT 
for the corresponding deviation under same gap conditions.  

Figure 4 gives the quantified results, which indicates the estimated CV(RMSD) of reconstruction 
results for  individual pixels. At the same time, the reconstructed series of six random selected 
sample points has been given in Figure 5. As one can see, the vegetation area northern than 60o 
(point0 in Figure 5)   and mountainous areas of earth (point5 in Figure 5) have unrealistic 
reconstruction performance due to persistent snow cover in these regions at the beginning and end 
of the yearly series and a snow free period in the central segment. The CV(RMSD) values show a 
large spatial variation in the region between 40oN and 60oN (point-0 in Figure 5), which may be 
attributed to intermittent snow at two terminals of yearly series.  Due to the cloud cover over the 

 

Figure 3: Mean of CV(RMSD) as a function of MGS (left panel), NL (middle panel) and NG (right 
panel) level and time series pattern. The total number of samples in each time series is 46. 

 

Figure 4: Quantified CV(RMSD) of 2009 global NDVI time series processed by HANTS. 
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Amazon, Central African (point4 in Figure 5) and Southeast Asian rainforest are distributed 
randomly all over the year other than only at the two terminals, the reconstruction results show a 
good performance. Although another cloud prone area, e.g. in India and Southwest China (point2 
in Figure 5), is covered by cloud all over the summer, they get a better reconstruction performance 
than snow cover area because of the gaps mostly appear in the middle of series. Further analysis 
of impact of gap position on the reconstructed time series by HANTS will be addressed in the 
future study. The Gobi, desert, water snow/ice regions (point3 in Figure 5) all have no significant 
vegetation signal (NDVI less than 0.2 all over the year), thus no analysis were given in this study. 

Considering that the main cause of outliers in NDVI time series are clouds and snow cover, and 
these two factors both appear in relatively persistent period in a year for a specific location on the 
earth, so it is reasonable to accept that the quantified accuracy in  Figure 7 depicts the outline of 
the global normal accuracy condition although the results are just derived for a single year of NDVI 
time series data.  

 

DISCUSSION AND CONCLUSIONS 

This study proposed a novel method to quantify the accuracy of harmonic analysis based time 
series reconstruction by parameterizing the gaps in time series using the MGS, NL and NG 
parameters. The same gap configurations can exert distinct effects on time series with different 
patterns. M-S and M-B patterns are more sensitive to gaps, which imply that the NDVI time series 
variation can be a potential controller of reconstruction performance and more attention should be 
paid to areas covered by vegetation with high annual variations.  

Following the methods and results in this paper, an accuracy LUT has been constructed and used 
to quantify the accuracy of a global NDVI time series processed by HANTS. The results advise that 
both periodical cloud and snow cover are main cause of bad HANTS performance, and the snow 
cover factor is more significant. HANTS algorithm may be more suitable for low-latitude area and 
new improvement should be developed to fulfill the time series reconstruction required over high 
latitude areas. Fortunately, the real gap conditions of global NDVI dataset are limited, if we can 
improve HANTS algorithm to reach an acceptable accuracy under gap conditions that give a bad 
reconstruction accuracy currently, a global gap-free NDVI dataset can be produced.. 

This evaluation method can also be extended to assess other reconstruction algorithms than 
HANTS. For the purpose of global representativeness, we simulated a NDVI time series dataset 

 

Figure 5: The original and reconstructed time series of sample points in Figure 4. 
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with distinct patterns. We also highly recommend, however, to use a synthetic dataset (other than 
a simulated one in this study) fulfilling the global representativeness to evaluate the accuracy of 
reconstruction algorithms (12, 13). 
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