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ABSTRACT 

The estimation of global solar radiation incident on the earth’s surface is an important issue for 
several solar-based applications. From a signal processing point of view, it falls within non- 
stationary, non-linear/non-Gaussian dynamical inverse problems. In this paper, we propose a 
sequential Monte Carlo state space approach combining satellite images and in situ data. We 
propose original observation and transition functions taking advantages of the characteristics of 
both the involved type of data. A simulation study is carried along with a comparison with the state 
of the art established method, Heliosat. 

INTRODUCTION 

The knowledge of the global solar radiation incident on the earth’s surface and its geographical 
distribution is of prime importance for numerous solar-based applications (Climate change 
assessment, solar renewable energy systems). Hourly and daily values of solar radiation 
measurements with high spatial resolution that are always necessary for these applications imply 
unacceptable cost if provided by a high density ground based radiometric network. Besides 
interpolation techniques applied to radiation measurements become ineffective when the distance 
between the meteorological stations is greater than 34-50 km. 

Satellite sensors can provide an alternative to the sparse coverage of radiometric networks since 
they can produce database over large regions on a high spatial resolution grid (1 by 1 km in visible 
range). However the computation of solar radiation by means of satellite images is unfortunately 
not straightforward. The satellite image is a top-of the-atmosphere (TOA) observation. The pixel 
value represents the flux density of the upward solar radiation emerging from the atmosphere, and 
the solar radiation absorbed by the ground is the fraction of the flux density of the downward solar 
radiation incident on the atmosphere. Determination of models capable of deriving global solar 
radiation at ground level from satellite images at high spatio-temporal resolution is an open issue in 
environmental research and solar applications that we are proposing to tackle in this paper.  

Several mathematical models were studied, in order to estimate solar radiation from satellite 
images. Two different approaches to this subject were developed. Statistical models from the one 
hand, physical models from the other hand (1, 2). Statistical models (3) have evolved toward 
complex hybrid models by incorporating additional observation data and both empirical and 
physical information ((4, 5) among others). Direct information are given by meteorological satellites 
and indirect information such as transmittance are obtained by radiative transfert equation. This led 
to better spatial distribution of the models response. However, despite their increasing complexity 
and an improved usage of numerous available data, recurring obstacles (e.g., the difference in 
spatiotemporal scale between the model and measurements; measurement errors; or the 
simplification of physical processes) still introduce a significant amount of uncertainty into the 
model predictions.  

In this paper we consider a Bayesian filtering approach to the dynamical estimation of the global 
solar radiation at ground level from satellite images. We defend the idea that an inverse approach 
based on sequential Monte Carlo filtering (6) helps to relax several assumptions and constraints 
while keeping estimations results in accordance with those of existing methods. Among these 
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constraints, one can note the physical model and its parameter estimation. In fact, using a 
stochastic model allows, if the amount of data samples is sufficient, to associate (in a statistical 
sense) the satellite data to their corresponding in situ samples. This conducts to infer the radiation 
measure in a continuous way of a geographic map with a precision comparable to the well 
established methods. 

The paper is organized as follows: after presenting the stochastic model along with the observation 
and transition laws in Section 2, we explain the sequential Monte Carlo sampling in Section 3. 
Section 4 presents our experiments and results and compares them to those obtained with a 
traditional model. Section 5 concludes and presents future directions. 

METHODS 

Stochastic models are commonly used to describe the behavior of many processes. Model 
variables can be divided into hidden variables (that are not measured) as solar radiation estimates 
at surface, and observed variables as satellite image pixels. A combination of hidden and 
measured variables can be used to represent the dynamic behavior of the nonlinear process as 
described before. 

 

The data and notations 

A common assumption underlying solar irradiance signal is that it can’t be regarded as a stationary 
process due to the diurnal and annual variation related to the sun’s changing angle. To remove 
these effects and obtain a weekly stationary stochastic process solar irradiance is often normalized 
by dividing solar radiation at the earth surface by the extraterrestrial solar irradiance. The result is 
defined as the clearness index. The horizontal irradiance outside the atmosphere is determined 
using: 

G0(i,j)=IscE0coss(i,j)       (1) 

where Isc= 1367 W/m² is the solar constant, the extraterrestrial irradiance normal to the solar beam;  

E0 is the excentricity correction factor and s(i,j) is the sun zenithal angle at pixel (i,j). E0 and s 
depend on astronomical relationships and can analytically be determined for each instant k. Thus 
the knowledge of the clearness index allows the calculation of solar radiation at the earth’s surface 
and inversely. Let xk  denote the clearness index at time k : 

 

xk  = Gk(i,j) / G0k(i,j)       (2) 
 
where Gk(i,j), is the horizontal global irradiance at ground level for the time k and the pixel (i, j) and 
G0k(i,j) is the horizontal irradiance outside the atmosphere for the time k and the pixel (i, j). They 

are expressed in W.m-2. Observations of our model refer to the apparent albedo (i,j) observed by 

the satellite sensor for the pixel (i, j) (containing the ground location). (i,j) has no unit and is equal 
to the bidimensional reflectance. 

(i,j)  = L(i,j) / (IscE0coss(i,j))     (3) 

 

L(i,j) is the is the observed radiance. xk∈ Rn is a state vector evolving according to the following 
equation: xk+1 =fk(xk, vk) where vk  is i.i.d. random noise with unknown probability distribution 
function (pdf). At discrete times, observations zk ∈ become available and are related to the state 
vector via the observation equation: zk= hk(xk,wk) The filtering problem can be formulated as: 

 

xk=fk(xk-1)+vk-1       (4 ) 

zk=hk(xk)+wk       (5) 
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v and w are the process noise and the observation noise. The state transition density is fully 
specified by fk and the process noise distribution and the observation likelihood are fully specified 
by hk and the observation noise distribution. 

 

The transition law (process law) 

 

The first part of the stochastic model (eq. 4) is the transition law. In this work we use a transition 
law based on the ARMA (Auto-Regressive Moving Average Model) process called TAG (Time-
dependant Autoregressive, Gaussian model) developped by Aguiar and Collares-Pereira (7) and 
designed to be independent of location and time of the year. This model generates synthetic daily 
sequences of the hourly clearness index xk as a Markov chain. To takes into account seasonal 
phenomena the variable xk is normalized (centrered and reduced): 

 

     (6) 

 

where xkm and  are the average hourly value and standard deviation of x and are calculated from 
the unique input of the model : Kt. Kt is the monthly average of the daily clearness index. The wide 
availability of this type of monthly average data enables this model to be used almost anywhere. 
The sequential properties of the y variable have significative dependence on its previous value. 
The proposed ARMA(1,0) model is:  

 = 
 

+ r     (7) 

where r is a random Gaussian variable with null average, and 1= 0.38 + 0.06 cos(7.4Kt - 2.5).  

The observation law 

 

Apparent albedo k(i,j) extracted from the digital satellite image over the time-interval are used to 
estimate what should be the hidden state xk, clearness index at time k, by the knowledge of the 
observation law hk. 

The nonlinear function hk may be obtained using physical laws such such as radiative transfert 
functions. However, due to the complexity of physical processes, it is difficult to develop accurate 
and reliable nonlinear function, in particular in a tropical area (our area of study). The task is to 
obtain an estimate of the unknown xk where only the value of zk is known. One approach for 
estimating xk is modeling of the joint distribution p(x,z) with a learning dataset of clearness index 
data and apparent albedo data.  

We consider a learning set consisting of M available paired data (X, Z). The xi, (i = 1, 2,…,M), is 
the value of the clearness index obtained from a ground radiation measurement at time i 
associated with the apparent albedo value zi over the ground location. The inference task has 
three folds:  

 

1. obtain the joint density p(x,z);  
2.  estimate the conditional distribution p(x|zk), for apparent albedo zk and 
3. obtain an estimate   from such distribution.  
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Figure 1: Two dimensional estimated joint distribution p(x,z) between clearness index values and 
apparent albedo data in  
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Figure 2: Three dimensional estimated joint distribution p(x,z) between clearness index values and 
apparent albedo data 

 

We rely on a Monte Carlo approach to construct the joint density of p(x, z). The regular steps of a 
particle filter can generate an approximation of the joint pdf p(x, z) as the superposition of (equally 
weighted) local kernel densities centred about each sample (xi, zi), drawn from the learning set (8).  

p(x,z) =    (8) 

A common choice of Kernel density is the Gaussian Kernel. Each kernel can be propagated by 
using a local linearization (Fig. 1.) yielding a continuous output distribution p(x|z). Identifying the 
distribution of the clearness index state variable conditioned on the apparent albedo variable, 
p(x|zk), reduces to identifying a marginal of this joint distribution. The conditional distribution p(x|zk), 
is the section of p(x) at Z = zk.  
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Figure 3: Conditional distribution p(x|zk) extracted from p(x|z) 

 

Given the distribution of the clearness index x conditioned on the the apparent albedo zk, the user 
has the freedom to choose any estimates of X. We choose the maximum a posteriori (MAP):  

 = argmax p(x|zk)    (9) 

because it selects the maximum of the conditional distribution (note that other choices are 
possible). 

 PARTICULE FILTERING 

Solar radiation estimate through satellite images is a problem of causally estimating a hidden state 
sequence from a sequence of observations that satisfy the Hidden Markov Model (HMM) 
assumption. The problem is to recursively compute the “posterior” at time k  using the posterior at 
time (k-1) and the current observation (probability density function of the current state conditioned 
on all observations until the current time). In others words, the problem is to find an update formula 
from p(xk-1|z1:k-1) to p(xk|z1:k) where z1:k  denotes all observation {z1, . . . , zk}. 

 

Figure 4: Bayesian Network of the Hidden Markov Model. Clearness index, xk, is the hidden state 
and apparent albedo extracted from the digital satellite image, zk, is the observation. 

 

For most nonlinear or non-Gaussian state space models, the posterior cannot be computed 
analytically. However, it can be efficiently approximated using a particle filter (PF) based sampling 
(9) which is a Sequential Monte Carlo technique. A PF is a recursive algorithm which produces at 
each time k, a cloud of N “particles” (Monte Carlo samples), along with their corresponding 
weights, whose empirical measure closely approximates the true posterior for large N. 

Time evolution is achieved with an importance sampling distribution via sequences of sampling 
and importance weighting. For simplicity reasons, we choose the importance density as the prior 
p(xk|xk-1). In order to overcome the major problem of PF techniques, the particles degeneracy, we 
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introduce a resampling strategy. This algorithm is designed as the SIR particle filter [8]. Detailed 
sequences of our algorithm are given below : 

 
1   (1) Initialization: 

2  set m = number of iterations; set n = number of samples 
3 set k = 1 and select an appropriate initialization density p( | )  

a
 

4  for k = 1 to m 
5 do 
6  (2) Prediction: 

7 if k = 1 
8 then 

9  Draw samples { }from p( | ) 

10 else  

11  Draw samples { }from p( | )  
b
 

12 Compute the predicted state: E( | ) =  

 
13  (3) Estimate the MAP  from p( | ) for each  

c
 

14  (4) Weights the samples according to the likelihood: 

15 Evaluate the weights: = p( | ) 

16 Normalize the weights: =  

17   (5) Compute the state estimate: E( | ) =  

18   (6) Re-sampling 

19   Draw (with replacement) n samples from { } 

20   so that  is selected with probability  

21   The new set is denoted as { } 

 

a SIR particle filter simulations were conducted according to the observation dataset. Since the 
dataset provided by meteorological stations consists of daily whole sequences, initial measurement 
corresponds in fact to sunrise time. Initial distribution is then chosen to be a white noise distribution 
with a zero mean. An initial set of particles { |i=1, 2,…., n} is formed with uniform weights: =  

b according to the transition law (2.2) 

c according to the joint density p( , ) of the learning dataset.  refers to equation (9)  

“Systematic resampling” scheme (10) is used in the last sequence. It is achieved by setting : 

Ui = (i-1)/n + U, where U is a single random drawn from the U([a,b]) denotes the uniform 
distribution on the interval [a; b]. Its performance is generally found to be close to that of “residual” 
and “stratified” resampling. This scheme is often preferred due to its computational simplicity. 

RESULTS 

Hourly and daily global solar irradiance estimates derived from particle filter model are compared 
with hourly and daily global irradiance measurements performed at a single ground station by the 
French National Meteorological Service of the French Guiana. Comparisons with the Heliosat2 
method statistics were also made (11). Heliosat2 is an existing satellite estimation method 
produced by Mines ParisTech. The Heliosat2 method (4) converts images acquired by 
meteorological geostationary satellites into data and maps of solar radiation received at ground 
level all over Europe, Africa, and the Atlantic Ocean.  

In order to develop and validate the particle filter model a set of 4454 high resolution satellite 
images (GOES EAST) from the visible channel (0.4μm-1.1μm) covering a 207 days period from 
the year 2010 has been selected. This selection allows for various sky coverages. The apparent 
albedo observed by the satellite sensor is determined for cell of 0.2°x0.2° in size by averaging 
several pixels. The joint probability distribution function (pdf) between clearness index and 
apparent albedo is obtained using a learning dataset including randomly chosen satellite images 
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and measurement data from 4 ground meteorological stations spread over the 84000 km² of the 
French Guiana territory.  
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Figure 5: Comparison between hourly measured and hourly estimated irradiance 

 

Hourly and daily solar irradiance for a single station were estimated using a test dataset (with data 
not used in the learning dataset) processed by the SIR particle filter with 400 samples. In Figure 5 
the particle filter based estimates are compared with solar radiation measurements from the 
ground stations on a hourly basis. The results indicate that the models overestimated the radiation 
for lower irradiances. Figure 6. shows comparisons between daily measured and daily estimated 
irradiance.  
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Figure 6: Comparison between daily measured and daily estimated irradiance 

 

The performance of the particle filter based model was estimated using root mean squared error 
(RMSE) and mean bias error (BIAS) on a daily basis and are presented in Table 1. Relative BIAS 
and RMSE are also given as a percentage of the daily averaged measured irradiance. Relative 
RMSE obtained for Particle Filter based model is similar to average RMSE obtained with Heliosat 
model (11). 

RMSE = (
n

(Rm-Rest)
²/n )

1/2

  

BIAS =
n

(Rm-Rest))/n 

Where Rm  is the measured ground solar radiation value and Rest is the estimated solar radiation 
value. They  are similar. 
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Table 1: RMSE and BIAS between daily solar irradiance measurements and daily solar irradiance 
estimates (values in W/m² and percentage) 

 RMSE Bias (MBE) 

W/m² 566 220 

Relative (%) 10% 4% 

Heliosat2 ~10% ~5% 

CONCLUSIONS 

The developed method connects global and local dynamics of solar irradiance in a Bayesian 
framework by using the existing relation between clearness index data and satellite apparent 
albedo (3). A particle filter approach has been developed to estimate solar radiation at surface 
using satellite images. The proposed method incorporates statistical model for observation 
process. The joint distribution of state variable and observation variable is not restricted by any 
prior assumption and gives a probabilistic perspective based on conditional distribution estimates. 
The observation model takes advantage of the statistical relationship between the clearness index 
data and apparent albedo of satellite image to avoid introduction of complex radiative transfert 
equations while keeping estimation results in accordance with those of existing methods. 

We demonstrate the use of a SIR particle filter for deriving solar radiation estimates using remote 
sensing. However the method need to be improved for low daily solar irradiances. In this work we 
have focused on MAP estimate, however it may be supposed that a substantial reduction of the 
daily RMSE can be gained by optimizing the joint pdf and state estimates choice and further 
investigations will be made in this direction. Future works need to be pursued on a global scale and 
on various ground covers. 
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