
1st EARSeL Workshop on Temporal Analysis of Satellite Images 254 
Mykonos, Greece, 23rd – 25th May, 2012 

 

MULTI-SENSOR ASSESSMENT OF TRENDS IN ATTRIBUTES OF 
VEGETATION DYNAMICS AND ECOSYSTEM FUNCTIONING DERIVED 

FROM NDVI TIME SERIES 

Bruno Marcos1, Isabel Pôças1, João Gonçalves1 and João Pradinho Honrado1,2 

1.  CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do 
Porto Campus Agrário de Vairão, Rua Padre Armando Quintas, Crasto. 4485-661 Vairão, 
Portugal; bruno.marcos@fc.up.pt 

2.  Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Edifício FC4, 
Rua do Campo Alegre, S/N. 4169-007 Porto, Portugal. 

ABSTRACT 

Vegetation Indices derived from Earth Observation Satellite data have been broadly used for a 
wide range of ecological applications. One of such applications is vegetation monitoring. Properties 
of NDVI time series can be summarized in several metrics of the NDVI annual curve, including 
metrics that measure attributes related with primary production and with phenology, which can 
provide information about the condition and functioning of vegetation and ecosystems, related with 
the exchanges of matter and energy. In this study, we use a consistency analysis approach to 
compare the inter-annual trends in attributes of vegetation dynamics and ecosystem functioning 
obtained from two NDVI time series products, from two different satellite sensors (Terra/MODIS 
and SPOT/VGT2). We also discuss the use of outputs from analyses based on data from multiple 
sensors to enhance the assessment and monitoring of condition and changes in such attributes. 
Results show low consistency in trends of the selected metrics, between the two datasets used, 
including the relative proportions of significant and non-significant, and positive and negative 
trends detected, as well as in the magnitude of the trends detected. Thus, the use of different 
datasets and/or sensors for the assessment of trends in attributes of vegetation dynamics and 
ecosystem functioning can potentially lead to different conclusions about environmental condition 
and change at regional scale, which can have an impact on reporting, management policies, and 
decision-making. To cope with this problem, when evaluation of the accurateness of the results 
(i.e. validation with ground truth like, e.g., phenological observations with dedicated stations) is not 
available and/or possible, we suggest using a consistency analysis of outputs from two (or more) 
different sources (i.e. datasets/sensors), like the one employed in this study. This approach allows 
to identify the main areas where the main trends in attributes of vegetation dynamics and 
ecosystem functioning are likely to have occurred, within a target region and period of time. 

INTRODUCTION 

Worldwide concerns about the impact of global change on the structural and functional response of 
ecosystems give rise to the need of implementing efficient monitoring tools aiming for tracking and 
understanding environmental and ecological change. 

Vegetation Indices (VIs) derived from Earth observation satellite data have been broadly used for a 
wide range of environmental and ecological applications (1). One of such applications is vegetation 
monitoring, due to the scalable relations of this type of data with several plant biophysical 
parameters, e.g. (2,3,4,5). Particularly, the Normalized Difference Vegetation Index (NDVI) is 
strongly related to the fraction of the incoming photosynthetically active radiation (fPAR) 
intercepted by green vegetation, and it has been widely used for monitoring changes in ecosystem 
structure and function (6,7,8), monitoring biodiversity state and change through species detection 
or modelling (9,10,11), detecting long-term trends in vegetation growth and phenology (12,13,14), 
providing inputs for primary production (15) , and a reference to model carbon balance worldwide 
(16). 
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Properties of NDVI time series can be summarized in several attributes of the NDVI annual curve, 
including attributes related with primary production (e.g. (17)) and with phenology (e.g. (18)), which 
can provide information about the condition and functioning of vegetation and ecosystems (e.g. 
(8,19,20,21,22,23)). Such functional attributes are related with the exchanges of matter and energy 
and have a shorter response time to environmental changes (when compared to structural 
attributes), thus allowing a better understanding of large-scale ecological changes associated to 
ecosystem function and processes (19,24,25). 

In this sense, NDVI time series datasets, like the ones derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) and the Satellite Pour L'Observation de la Terre – 
VEGETATION (SPOT-VGT) sensors, hold considerable promise for spatially continuous 
characterization and monitoring of changes in vegetation dynamics and ecosystem functioning at 
regional scales (e.g. (19,23)), given their global coverage, intermediate spatial resolution (250m to 
1km), high temporal resolution (data aggregated in 10- to 16-day composites), availability (since 
2000 and 1998, respectively), and free-of-charge status (6). 

Temporal analysis of data from satellite sensors with high temporal resolution has become 
increasingly popular (e.g. (26,27,28,29), with particular attention being given to the detection and 
measurement of intra- and /or inter-annual trends in NDVI values (12,14,28,30,31,32,33). However, 
there are relatively few studies comparing different datasets ((e.g. (30)), and even less from 
different sensors (e.g. (14)), for those purposes. Furthermore, trend analysis is often used to 
evaluate changes in NDVI values, but seldom used to evaluate changes in ecosystem functional 
attributes extracted from those values (e.g. (26)). 

In this work, we aimed to assess if there are significant differences between inter-annual trends of 
key ecosystem functional attributes obtained from two different sensors, in this case MODIS and 
VGT. To do so, we evaluated inter-annual trends in several attributes of the NDVI curves using 
time series datasets from both sensors, for the period 2003–2010, in the northern half of mainland 
Portugal. We also point some directions regarding the use of outputs from analyses based on data 
from multiple sensors to enhance the assessment of trends in such attributes. Finally, we discuss 
implications of our results for the assessment and monitoring of ecosystem state and trends as 
well as for the timely and robust detection of ecological change. 

TEST AREA AND MATERIAL 

Test area 

The test area comprises the northern part of continental Portugal, which includes the westernmost 
transition between the Atlantic and Mediterranean environmental zones of Europe (34)). This area 
is characterized by a wide heterogeneity in elevation, ranging from 0 to 1993 metres, thus resulting 
in a great variation of environmental conditions, namely climate and soils. Native forests are 
dominated by deciduous broadleaved trees in Atlantic areas and by evergreen sclerophyllous trees 
in Mediterranean areas. Evergreen forest plantations of eucalypts and pines, together with a high 
diversity of agricultural land use types and urban areas, further contribute to enhance landscape 
heterogeneity. Furthermore, this area is located within the Iberian Peninsula, which is considered 
to be a very dynamic area in relation to global change and ecosystem functioning (19). 

Satellite datasets 

The 16-day Terra MODIS NDVI product at 1 km spatial resolution (MOD13A2, Collection 5) is 
based on the Terra MODIS level 2 (L2G) daily surface reflectance product (MOD09 series), which 
provides red and near-infrared surface reflectance corrected for the effect of atmospheric gases, 
thin cirrus clouds and aerosols. This product includes a data quality assessment layer (QA binary 
data) and a pixel reliability layer holding information on overall usefulness and cloud conditions on 
a per-pixel basis (35). 

The SPOT-VEGETATION 10-day composite NDVI synthesis product (S10) provides a Maximum 
Value Composite (MVC; (36)) at full spatial resolution (1 km). This product includes corrections for 
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molecular and aerosol scattering, water vapour, ozone and other gas absorption, and for 
misregistration of the different channels, as well as calibration of all the detectors along the line-
array detectors for each spectral band. Status maps are provided for each S10 product including 
per-pixel cloud-cover information (37). 

Although data is available from February 2000 and April 1998, for MODIS MOD13A2 and SPOT-
VEGETATION S10 products respectively, in this study we used only the composites from January 
2003 to December 2010, from both datasets, because of the SPOT-VEGETATION sensor swap 
from the one on board the SPOT-4 satellite (VGT1) to the one on board the SPOT-5 satellite 
(VGT2).(14) reported a significant shift in NDVI values after this change, and explained it by 
differences in the design of the VGT1 and VGT2 red and near-infrared spectral bands. 

Table 1 presents a summary of the main characteristics of both. 

In order to make the MODIS and VGT datasets more directly comparable, we: (i) projected all the 
data to the WGS84 / UTM zone 29 N reference system; and (ii) converted the VGT status maps to 
a quality flags scheme compatible with MODIS’ Pixel Reliability layers. 

Table 1: Main characteristics of the datasets/sensors used in this study. 

 MODIS VGT 

Satellite/sensor Terra/MODIS SPOT-5/VGT2 

Availability Since February 2000 Since January 2003 

Equator-crossing time 10.30 am 10.30 am 

Product MOD13A2 S10 

Spatial resolution 1 km 1 km 

Spatial reference system Sinusoidal projection Plate-Carrée geographic projection 

Temporal frequency 16-days MVC 10-day MVC 

Number of images per year 23 36 

Radiometric resolution 12-bit (4096 levels) 8-bit (256 levels) 

Red band wavelength interval 620-670 nm 615-690 nm 

NIR band wavelength interval 841-876 nm 782-890 nm 

Preprocessing 

Remotely sensed, per-pixel time series of the Normalized Difference Vegetation Index (NDVI) can 
be hindered by noise from different sources (e.g. presence of clouds, varying sun-sensor-viewing 
geometries; (38)). To address this issue, we used a blind rejection approach (i.e. without prior 
knowledge of the quality of the data) for data cleaning and smoothing, in order to remove spurious 
values. 

Firstly, we employed a filter based on the Hampel identifier (39), which uses the concept of 
breakdown points based on local estimations of the median absolute deviation (MAD) and replaces 
the identified outliers with a local median. The Hampel identifier is often considered extremely 
effective (40). 

Secondly, we used a Savitzky-Golay filter, in order to further remove and replace spurious values. 
Savitzky-Golay filters (41) have been increasingly applied for cleaning, smoothing, and 
reconstruction of NDVI time series (42,43). 

All computations mentioned in this section were performed using the R programming environment 
(44). 
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ANALYTICAL FRAMEWORK 

Extraction of ecosystem functional attributes 

The extraction of ecosystem functional attributes from temporal profiles of remote sensing-derived 
variables (e.g. vegetation indices like NDVI) has gained considerable attention in the last years. To 
this end, numerous methods, based on a wide range of techniques, have been used. One of the 
most broadly used software packages for such purposes is TIMESAT (18,45,46,47,48), which 
implements different methods to fit the upper envelope of NDVI data and allows the use of quality 
flags (i.e. pixel reliability) to assign weights as measures of the uncertainty in the NDVI data. 

In this work, we used TIMESAT’s Double Logistic function-fitting method to extract metrics of the 
NDVI annual curves that are related to key attributes of vegetation dynamics and ecosystem 
functioning. Double Logistic has been used for some time (22,49) and is currently one of the best 
performing techniques available to fit NDVI annual curves (50). 

We selected six of the eleven metrics directly computed by TIMESAT, based on their ecological 
relevance ((25); Table 2). Three of them are measures of variability in productivity (i.e. seasonality 
of vegetation growth) and overall productivity during the growing season (“Seasonal amplitude”, 
“Largest data value for the fitted function”, and “Large seasonal integral”), and the other three are 
indicators of phenology (i.e. timing of key parameters of the growing season: “Time for the start of 
the season”, “Time for the mid of the season”, and “Time for the end of the season”). We then 
compared the major patterns of the yearly median values for each pixel and metric, between 
datasets, by visual inspection of corresponding maps and density plots. 

Table 2: TIMESAT metrics used in this study, with corresponding key attributes of vegetation 
dynamics and ecosystem functioning. For more information on the metrics available in TIMESAT, 
see (46,47). 

TIMESAT designation Short name Ecological meaning 

Seasonal amplitude AMP Intra-annual variability (i.e. seasonality) 
of primary production  

Largest data value for the fitted 
function during the season 

FMX Maximum level of photosynthetic 
activity/primary production 

Large seasonal integral LSI Cumulative primary production during 
the growing season 

Time for the start of the season SOS Date of the start of the vegetation 
growing (green-up) 

Time for the mid of the season MOS Proxy of the date of maximum 
photosynthetic activity 

Time for the end of the season EOS Date of the end of the vegetation 
growing (senescence) 

 

Evaluation of temporal trend patterns and consistency 

In order to evaluate the direction and magnitude of inter-annual trends for each of the metrics 
analyzed, we used the Theil–Sen's non-parametric statistical test. The Theil–Sen's test is a rank-
based test which is robust against non-normality of the distribution and missing values (51), and 
unlike the Mann–Kendall test, it detects not only if a trend exists, but also provides the amplitude of 
that trend (52). For this purpose, we used the R package zyp (53), which accounts for inter-annual 
autocorrelation present in the data.  

To assess the level of consistency between the trends obtained from the different datasets, we 
applied a classification scheme adapted from (30) in order to get a single outcome for each pixel 
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(representing the level of consistency), from the combination of the trend slope and p-value 
obtained from each datasets. For that purpose, the trend slopes and p-values from each dataset 
were classified into statistically significant (“Negative” or “Positive”) and non-significant trends 
(“Absence”), assuming significant slopes for p-values < 0.1. Consensus maps were then produced 
from the results of this classification process. Table 3 illustrates the classification scheme 
employed. 

Table 3: Classification scheme combining the temporal trends from both datasets/sensors used 
(MODIS and VGT). 

 Negative (VGT) Absence (VGT) Positive (VGT) 

Negative (MODIS) Consistent negative Likely negative Uncertain/ambiguous 

Absence (MODIS) Likely negative Consistent absence Likely positive 

Positive (MODIS) Uncertain/ambiguous Likely positive Consistent positive 

 

Comparison of trend magnitudes between datasets, for each metric, was carried out by visual 
inspection of the corresponding density plots and consensus maps. We used chi-squared tests in 
order to evaluate differences in the proportions of each trend class (“Negative”, “Positive” or 
“Absence”) between datasets. Finally, we looked for major spatial clusters of identified statistically 
significant trends, by applying simple majority filters (i.e. choosing, for each pixel, the most frequent 
trend class in the corresponding 3×3 pixels spatial vicinity) to the consensus maps. 

RESULTS AND DISCUSSION 

Regional patterns of ecosystem functional attributes 

The spatial distributions of the selected TIMESAT metrics obtained from the two datasets used in 
this study (i.e. MODIS and VGT) reveal similar overall geographic patterns of key attributes of 
vegetation dynamics and ecosystem functioning in the test area (Figure 1). 

 

 

Figure 1: Maps of the yearly median results for the selected TIMESAT metrics for the test area –  
“Seasonal amplitude” (AMP), “Largest data value for the fitted function during the season” (FMX), 
“Large seasonal integral” (LSI), “Time for the start of the season” (SOS), “Time for the mid of the 
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season” (MOS), and “Time for the end of the season” (EOS). Metrics AMP, FMX and LSI are 
dimensionless. Values of metrics SOS, MOS and EOS can be read as “relative time of the year”, 
with “0” corresponding to the beginning of the year (i.e. January 1st) and “1” corresponding to the 
end of the year (i.e. December 31st). Maps on the top row show results of metrics obtained using 
the MODIS dataset, whereas the maps on the bottom row show the ones obtained using the VGT 
dataset. 

 

Visual comparison of the yearly median of each metric’s density plots (Figure 2) show that the 
general shape of the curves are similar between datasets, with fewer differences in the distribution 
of values for the metrics related to primary production (Figure 2a,b,c) than those for the phenology 
metrics (Figure 2d,e,f). The former tend to follow approximately uni-modal distributions of values, 
with the respective central tendency (in this case, the median) for both datasets being very close to 
each other, whereas the latter tend to exhibit multi-modal distributions of values, with two or more 
main peaks that are generally located around the same values, but with differences in the relative 
densities of each peak between datasets. 

 

 

Figure 2: Distributions of values of the yearly median for each metric calculated from the two 
datasets used: MODIS (red bold lines) and VGT (blue bold lines) – “Seasonal amplitude” (AMP), 
“Largest data value for the fitted function during the season” (FMX), “Large seasonal integral” 
(LSI), “Time for the start of the season” (SOS), “Time for the mid of the season” (MOS), and “Time 
for the end of the season” (EOS). Dotted lines correspond to the respective median values (MODIS 
in red and VGT in blue), as an indication of central tendency. 

 

The observed patterns suggest that attributes of vegetation dynamics and ecosystem functioning 
more related with primary production have a more gradual variation within the test area, while the 
phenological attributes exhibit more evident geographic transitions, which can be related with the 
main regional patterns of vegetation types driven by climatic and land use heterogeneity. 
Moreover, the stronger differences in the phenology-related metrics can also result from the 
differences in the temporal resolution of the data used: 10-day composites from SPOT-VGT vs. 16-
day composites from MODIS. 

 

Regional patterns and consistency of temporal trends 
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Analysis of trend slope values through using density plots reveal large discrepancies between 
trends for the selected metrics between the two datasets (Figure 3). When only the statistically 
significant slopes are considered, the values tend to exhibit a bi-modal distribution, with one peak 
in the negative trend region and the other in the positive trend region. 

Trend analysis consistently identified more statistically significant positive trends from MODIS data 
than from VGT data, across the TIMESAT metrics considered, except for FMX. Conversely, a 
larger number of significant negative trends were identified in the test area from VGT data than 
from MODIS data (Figure 3). Comparison of proportions of pixels with significant (Negative or 
Positive) and non-significant (Absence) trends with chi-squared tests confirmed these results, 
since differences in the proportions of each trend type were found statistically significant (p-values 
<< 0.1, for all cases, thus rejecting the null hypothesis of equal proportions). 

 

 

Figure 3: Distributions of slope values of each metric calculated from the two datasets used: 
MODIS (red) and VGT (blue) – “Seasonal amplitude” (AMP), “Largest data value for the fitted 
function during the season” (FMX), “Large seasonal integral” (LSI), “Time for the start of the 
season” (SOS), “Time for the mid of the season” (MOS), and “Time for the end of the season” 
(EOS). Bold lines correspond to the density of slope values with significant trends (p < 0.1), 
whereas dotted lines correspond to the density of all slope values, for reference purposes. 

 

In terms of trend magnitudes (positive and negative), the slope values obtained for the AMP and 
FMX metrics are centred around 0.007–0.008 year-1, and around 0.020–0.028 year-1 for the LSI 
metric (Table 5). For the phenology metrics, the median values of the slopes obtained are 0.011–
0.023 year·year-1 for the SOS metrics, 0.016–0.020 year·year-1 for the MOS metrics, and 0.012–
0.039 year·year-1 for the EOS metric. Table 5 summarizes the values of the trend slopes for the 
metrics analysed. 

Table 5: Summary of the main characteristics of the trend slope values: minimum (Min.) and 
maximum (Max.) absolute value, quantile 25% (Q1) and quantile 75% (Q3), and median of the 
negative (Median (-)) and positive (Median (+)) values. Units for metrics AMP, FMX and LSI are 
year-1, whereas units for metrics SOS, MOS and EOS are year·year-1. 

 Negative Positive 
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Min. Q1 Median(-) Median (+) Q3 Max. 

AMP 
MODIS -0.110 -0.011 -0.007 0.007 0.011 0.132 

VGT -0.041 -0.010 -0.008 0.007 0.010 0.041 

FMX 
MODIS -0.065 -0.012 -0.008 0.008 0.069 0.069 

VGT -0.039 -0.011 -0.007 0.008 0.068 0.068 

LSI 
MODIS -0.150 -0.034 -0.021 0.020 0.033 0.130 

VGT -0.152 -0.040 -0.028 0.022 0.035 0.131 

SOS 
MODIS -0.167 -0.033 -0.015 0.011 0.018 0.196 

VGT -0.239 -0.038 -0.023 0.015 0.037 0.275 

MOS 
MODIS -0.244 -0.031 -0.018 0.016 0.024 0.212 

VGT -0.299 -0.029 -0.020 0.018 0.028 0.243 

EOS 
MODIS -0.324 -0.054 -0.039 0.016 0.026 0.258 

VGT -0.367 -0.057 -0.038 0.012 0.020 0.329 

 

We found that per-pixel full consistency between significant trends obtained from the two datasets 
used was low, for all TIMESAT metrics considered. Consistent negative pixels accounted for less 
than 1% (from 0.1% for SOS to 0.8% for AMP) of the test area, with Likely negative outcomes 
(pixels where a significant negative trend was found for only one of the two datasets – a partial 
consistency) between 1.9% and 10.8% of the total number of pixels. Pixels with Consistent positive 
trends ranged between 0.4% (LSI) and 2.3% (FMX) of the test area, with Likely positive pixels (i.e. 
a partial consistency, where significant positive trends were found for only one of the two datasets) 
accounting for 2.2% to 10.8% of the test area. Inconsistent (i.e. Uncertain/ambiguous) trends 
between sensors were found for 0.1% (MOS) to 1.1% of the pixels (see Table 6). 

Table 6: Contingency tables showing the consensus between datasets in the percentage of pixels 
that exhibited significant trends (“Negative” or “Positive”) or non-significant trends (“Absence”) (p-
value < 0.1). 

a) AMP     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 276 (0.8%) 1374 (4.0%) 48 (0.1%) 1,698 (4.9%) 

Absence (MODIS) 2,647 (7.6%) 26,561 (76.5%) 1,338 (3.9%) 30,546 (87.9%) 

Positive (MODIS) 204 (0.6%) 2,007 (5.8%) 283 (0.8%) 2,494 (7.2%) 

Total (MODIS) 3,127 (9.0%) 29,942 (86.2%) 1,669 (4.8%) 34,738 (100.0%) 
     

b) FMX     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 93 (0.3%) 677 (2.0%) 82 (0.2%) 852 (2.5%) 

Absence (MODIS) 849 (2.4%) 25,909 (74.6%) 3,427 (9.9%) 30,185 (86.9%) 

Positive (MODIS) 69 (0.2%) 2,836 (8.2%) 804 (2.3%) 3,709 (10.7%) 

Total (MODIS) 1,011 (2.9%) 29,422 (84.7%) 4,313 (12.4%) 34,746 (100.0%) 
     

c) LSI     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 270 (0.8%) 1,497 (4.3%) 65 (0.2%) 1,832 (5.3%) 
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Absence (MODIS) 3,180 (9.2%) 25,914 (74.6%) 1,083 (3.1%) 30,177 (86.88%) 

Positive (MODIS) 320 (0.9%) 2,254 (6.5%) 151 (0.4%) 2,725 (7.9%) 

Total (MODIS) 3,770 (10.9%) 29,665 (85.4%) 1,299 (3.7%) 34,746 (100.0%) 
     

d) SOS     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 28 (0.1%) 656 (1.9%) 32 (0.1%) 716 (2.1%) 

Absence (MODIS) 679 (2.0%) 28,248 (81.3%) 1,895 (5.5%) 30,822 (88.7%) 

Positive (MODIS) 48 (0.1%) 2,808 (8.1%) 354 (1.0%) 3,210 (9.2%) 

Total (MODIS) 755 (2.17%) 31,712 (91.3%) 2,281 (6.6%) 34,748 (100.0%) 
     

e) MOS     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 124 (0.4%) 823 (2.4%) 27 (0.1%) 974 (2.8%) 

Absence (MODIS) 2,221 (6.4%) 25,273 (72.7%) 2,401 (6.9%) 29,895 (86.0%) 

Positive (MODIS) 178 (0.5%) 3,118 (9.0%) 583 (1.7%) 3,879 (11.2%) 

Total (MODIS) 2,523 (7.3%) 29,214 (84.1%) 3,011 (8.7%) 34,748 (100.0%) 
     

f) EOS     

 Negative (VGT) Absence (VGT) Positive (VGT) Total (VGT) 

Negative (MODIS) 259 (0.8%) 1,211 (3.45%) 68 (0.2%) 1,538 (4.4%) 

Absence (MODIS) 3,745 (10.8%) 22,474 (64.7%) 2,084 (6.0%) 28,303 (81.5%) 

Positive (MODIS) 377 (1.1%) 3,762 (10.8%) 768 (2.2%) 4,907 (14.1%) 

Total (MODIS) 4,381 (12.6%) 27,447 (79.0%) 2,920 (8.4%) 34,748 (100.0%) 

 

In the consensus maps for the six metrics considered (Figure 4), some patterns related with the 
main vegetation types could be recognized in terms of spatial distribution of trend classes. For 
example, areas dominated by Mediterranean vegetation types (the eastern part of the test area) 
showed lower density of pixels with statistically significant trends for the metrics of primary 
production (i.e. AMP, FMX and LSI) than areas typically with Atlantic vegetation types (in the 
western part of the test area). These differences may be explained by factors such as land cover 
change or variations in dominant species composition and relative abundance. Concerning the 
phenology metrics (i.e. SOS, MOS and EOS), the Mediterranean areas showed predominantly 
positive trends, suggesting that a general tendency for a delay in the vegetation growing season in 
the considered period (2003–2010) might have occurred. Atlantic areas show predominantly 
negative trends, which conversely suggest a general tendency for the vegetation growing season 
to occur earlier in the year. Full consistency, i.e. consistent significant trends (negative or positive), 
was, as mentioned above, not frequently found, being the majority of significant trends classified as 
Likely negative or Likely positive, meaning that a statistically significant trend was found only for 
one of the two datasets (i.e. partial consistency). Nonetheless, pixels with full consistency of trends 
were often found surrounded by pixels with partial consistent trends, whereas pixels with 
inconsistent (i.e. classified as Uncertain/ambiguous) were also seldom found, but with a scattered 
spatial distribution. 
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Figure 4: Consensus maps for the analysis of trends in selected TIMESAT metrics) – “Seasonal 
amplitude” (AMP), “Largest data value for the fitted function during the season” (FMX), “Large 
seasonal integral” (LSI), “Time for the start of the season” (SOS), “Time for the mid of the season” 
(MOS), and “Time for the end of the season” (EOS). Classification of trends was based on the 
combinations of the types of trends (“Negative”, “Positive” or “Absence”) from each dataset used 
(MODIS and VGT; see Table 3). 

 

Spatial generalization of consensus maps (Figure 5), aimed at identifying the main spatial clusters 
(i.e. spatially cohesive areas) of trend types in the test area, confirmed the general patterns 
described above. This generalization procedure tended to eliminate areas with inconsistent trends, 
while evidencing areas with either full or partial consistency of trends (both negative and positive), 
providing a clearer picture of the spatial distribution of main temporal trends found in the analysed 
set of metrics. A predominant effect of the east-west climatic gradient is apparent, nonetheless the 
effects of local disturbances related to land use change, wildfires and others should not be 
neglected. 
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Figure 5: Identification of main spatial clusters of trend types of the selected TIMESAT metrics, in 
the test area, obtained by generalization of the corresponding consensus maps (see Figure 4) – 
“Seasonal amplitude” (AMP), “Largest data value for the fitted function during the season” (FMX), 
“Large seasonal integral” (LSI), “Time for the start of the season” (SOS), “Time for the mid of the 
season” (MOS), and “Time for the end of the season” (EOS). Classification of trends was based on 
the combinations of the types of trends (“Negative”, “Positive” or “Absence”) from each dataset 
used (MODIS and VGT). 

 

The differences found in temporal trends of metrics derived from the NDVI annual curves may be 
explained by several factors. Red and near infrared bandwidths are slightly different between 
sensors, with both bands being wider for SPOT-5/VGT2 than for Terra/MODIS (Table 1). 
Radiometric resolution is also different between these two sensors – while MODIS is a 12-bit (i.e. 
212grey levels per band) sensor, SPOT-VGT2 is an 8-bit sensor (i.e. 28grey levels per band). 
Therefore we have to consider that there may be differences in the sensitivity of each sensor to the 
phenomena studied here. Although we used datasets produced at the same spatial resolution 
(1km), the spatial resolution at which each sensor acquires the data used to produce these 
datasets is different (250m for MODIS and ~1km for SPOT-VEGETATION), which may have an 
influence on the NDVI values of the datasets like the ones used in this study. In turn, differences in 
the temporal resolution of the dataset used (composites of 16-day for MODIS, and 10-day for VGT) 
seem also to have had a considerable impact on results from the phenology metrics, and the 
corresponding trends, and for the metrics obtained from those (e.g. LSI). It should be noted 
however that, although the S10 VGT dataset has higher temporal resolution, it may also be more 
“noisy” (as observed in the analysis of signal-to-noise ratios for both sensors following the noise 
reduction procedures; data not shown), making the question “which dataset was/is more 
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accurate?” not easy to answer without some kind of field validation procedure or “ground truth” 
comparison available. 

CONCLUSIONS 

This work compares the temporal trends in key attributes of vegetation dynamics and ecosystem 
functioning derived from products obtained from two different satellite sensors – the MOD13A2 
product from MODIS, and the S10 product from SPOT-VEGETATION (VGT2) – in the northern half 
of continental Portugal, in the 2003–2010 period. Consistency analysis revealed major differences 
in the use of these two datasets, in terms of direction and magnitude of the trends detected, as well 
as sensitivity to detect significant trends, especially for indicators of phenological attributes. 

Different results from the analysis of trends in NDVI annual curves can lead to different conclusions 
about changes in attributes of vegetation dynamics and ecosystem functioning. Indicators derived 
from satellite data can be of great importance for regional scale environmental assessments, and 
they can provide important contributions to support decision-making and management policies, 
and especially for assessment and reporting purposes. With this in mind, our results suggest that 
the use of only one dataset for the assessment of trends in attributes of vegetation dynamics and 
ecosystem functioning should only be considered for cases where it would be possible to 
determine (e.g. using a validation strategy) which of the available datasets is more accurate for the 
area to be studied and the specific purpose(s). The use of phenological observation field stations 
may be a possible solution for validating outputs from temporal analysis of attributes of vegetation 
dynamics and ecosystem functioning obtained from satellite images. Nevertheless, those 
phenological observations are still not often available for a great variety of vegetation types or at 
the ecosystem level and their gathering is very time consuming. If no such information is available, 
approaches like the one used in this study, i.e. consistency analysis of outputs from two (or more) 
different sources (i.e. datasets/sensors), may be an alternative, allowing for at least an overall 
perspective of the main trends likely to have occurred in a target region and time window.   
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