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ABSTRACT

Imaging spectrometry from aircraft or satellite borne sensors has many potential ecological

applications.  This paper reviews its use for the remote sensing of foliar biochemical concentration, as

this is one ecological application of remote sensing that is unique to imaging spectrometry.  Attention is

focussed on the development of methodologies, drawing where relevant on theory and techniques

from both outside and inside remote sensing.  Examples from the fields of near infrared spectroscopy

(NIRS) and geological remote sensing, along with an extensive reference list, provide an introduction to

some of the ecological opportunities offered by imaging spectrometry.

1. INTRODUCTION

Many environmental variables influence the signals that reach a remote sensor.  If we wish to use these

remotely sensed signals to estimate environmental variables then we need to ensure that the number of

remotely sensed signals is greater than the number of environmental variables that are causing those

signals to vary (Verstraete et al., 1996; Curran, 2000).  The number of environmental variables can be

reduced by holding some constant (e.g., restrict analysis to one geographic region, correct for

atmosphere) and the number of remotely sensed signals can be increased by recording many such

signals in narrow wavebands along the spectrum.  We can then repeat this sampling at different

locations, times, geometries of sensor and illumination and polarizations (Curran et al., 1998).  In

ecology attention has been directed towards increased spectral sampling because of great spectral

variability, in the 0.7μm to 2.5μm range, for vegetated landscapes.  However, the majority of this

spectral variability lies within just four or five dimensions (Curran et al., 1998); two dimensions in

visible (0.4-0.7 μm) wavelengths, one dimension in near-infrared (0.7-1.3 μm) wavelengths and one or

two dimensions in middle-infrared (1.3-2.5 μm) wavelengths.  If the remotely sensed signal in four to



five wavebands can account for most of the spectral variability in vegetated landscapes then why would

we wish to record in more wavebands?  From an engineering point of view surely we would be better

advised to maximise the signal-to-noise ratio (Smith and Curran, 1999) or increase (i.e., make finer) the

spatial resolution (Curran, 1994) of our sensor, rather than spread the remotely sensed signal over more

than four to five wavebands?  These concerns are reasonable if we are asking what I will call first and

second level ecological questions.  First level questions are a version of 'what is the vegetation there?'

and once answered, second level questions are a version of 'how much vegetation is there?'  Both of

these questions can usually be answered using broadband sensors with wavebands positioned in the

four or five locations mentioned above.  For example, we may wish to use remotely sensed signals in

red, near infrared and middle infrared wavebands to classify forest as a land cover class and then

estimate the leaf area index of that forest (Boyd and Curran, 1998; Boyd et al., 2000).  Such a use of

remote sensing is possible because we are detecting gross spectral features that are primarily the result

of changes in pigment absorption, within-leaf scattering and water absorption respectively.  If we wish

to progress further and ask a third level ecological question such as 'what is the condition of that

vegetation?' then the information we need does not reside within four to five broad wavebands.  This

information is within narrow spectral features that result from harmonics and overtones of absorptions

by foliar biochemicals (Curran, 1989; Clark, 1999).  To record these narrow spectral features we need a

sensor with many narrow wavebands (Hill and Mégier, 1994).  In other words, it is imaging

spectrometry that enables us to ask ecological questions of the third kind.

1. REMOTE SENSING OF FOLIAR BIOCHEMICAL CONCENTRATION

Accurate remotely sensed estimates of the foliar biochemical concentration of vegetation canopies

have been used to aid the understanding of ecosystem function over a wide range of scales (Peterson

et al., 1988; Gholz et al., 1997; Dawson et al., 1999).  This is because many biochemical processes, such

as photosynthesis, respiration, evapotranspiration and decomposition are related to the foliar

concentration of biochemicals such as chlorophyll, water, nitrogen, lignin and cellulose (Running,

1990; Peterson, 1991, Goetz and Prince, 1996).  Such remotely sensed estimates have also found

application in a wide range of ecosystems for estimating vegetation stress (Jago et al., 1999);

identifying species (Martin et al., 1998) and driving ecosystem simulation models over large areas

(Lucas and Curran, 1999; Lucas et al., 2000).  The remote sensing of foliar biochemical concentration

developed rapidly during the 1980s and 1990s (Peterson and Hubbard, 1992; Wessman, 1994; Curran

and Kupiec, 1995; Wülder, 1998; Treitz and Howarth, 1999).  Emphasis during the 1990s was on the

use of airborne imaging spectrometers (Staenz, 1992; Curran, 1994) to estimate the biochemical



concentration of tree canopies (Matson et al., 1994; Johnson et al., 1994; Dungan et al., 1996; Johnson

and Billow, 1996; Martin and Aber, 1997).  The research was stimulated by both the NASAs

Accelerated Canopy Chemistry Programme (ACCP) (Aber, 1994; Wessman, 1994; Smith and Curran,

1995; 1996; Curran et al., 1997) and parallel activities aimed at understanding the interaction of

radiation with leaves (Fourty et al., 1996; Fourty and Baret, 1998), forest canopies (Danson and

Curran, 1993; Danson, 1995) and leaves in forest canopies (Yoder and Pettigrew-Crosby, 1995;

Kupiec and Curran, 1995).  In retrospect, a large component of this understanding seems to have

come from modelling (Ustin et al., 1999), where leaf models containing a biochemical component

(Jacquemoud and Baret, 1990; Dawson et al., 1998a) have been used on their own (Baret and Fourty,

1997; Ganapol et al., 1998) or have been coupled with canopy models (Jacquemoud et al., 1996;

Dawson et al., 1999; Ganapol et al., 1999).  For example, such an approach has been used to determine

the seasonality of leaf chlorophyll content (Demarez et al., 1999) and the potential of radiation

measured by the Medium Resolution Imaging Spectrometer (MERIS) on Envisat for the estimation

of canopy chlorophyll content (Dawson, 2000).

If the remote sensing of foliar biochemical concentration is to flourish then ecologists who use

imaging spectrometer data will need to be alert to (i) the very many challenges that still lie ahead

(Peterson and Hubbard, 1992; Peterson, 2000) and (ii) techniques being developed for the processing

of spectra both outside and inside the field of remote sensing.

1. DEVELOPMENTS OUTSIDE REMOTE SENSING: AN EXAMPLE OF NIRS

The well-established research field of laboratory-based near infrared spectroscopy (NIRS) involves

the operational use of spectrometry in near-to middle-infrared wavelengths (AOAC, 1990).  NIRS

methods were brought to the attention of the remote sensing community by the United States

Department of Agriculture (USDA) who used NIRS for the spectrometric assay of biochemicals in

forage crops (Williams and Norris, 1987; Marten et al., 1989).  NIRS methods utilise an empirical

multivariate approach which assumes that a foliar spectrum is the difference between 100%

reflectance and the sum of the absorption features of each biochemical, weighted by their

concentration (Peterson et al., 1988; Curran et al., 1992).  At its simplest this method uses stepwise

regression to select wavelengths from across the whole of several reflectance, or more usually,

derivative reflectance spectra (Dixit and Ram, 1985; Tsai and Philpot, 1998) that are most strongly

correlated with the biochemical concentration of foliar samples (Curran, 1989; Martin, 1994).

However, NIRS is far more than this, as can be seen in NIRS textbooks (Burns and Ciurczak, 1992;



Osborne et al., 1993), proceedings of the various International Conferences on NIR Spectroscopy (e.g., Davies

and Williams, 1996), the Journal of Near Infrared Spectroscopy and NIR News.  Many of the applications

reported in the NIRS literature relate, in some way, to the food industry (Thyholta and Isaksson,

1997; Batten, 1998; Büning-Pfaue et al., 1998).  For example, quantifying cheese condition (Sørensen

and Jepsen, 1997), detecting faecies on chicken carcasses (Peterson, 2000), measuring sugar in sugar

beet (Salgo et al., 1998), or estimating kiwifruit softness (McGlone et al., 1997).  However, it is not a

great leap of imagination to move from the analysis of spectra produced by say, a laboratory-based

imaging spectrometer with a spatial resolution of 0.5 mm (Martinsen et al., 1999) to the analysis of

spectra produced by an airborne or spaceborne imaging spectrometer.

The application of NIRS is wider than the food industry and includes for example, operational tasks

such as monitoring production lines, to more interesting tasks such as assay of blood outside and

inside a patient, identifying a cars make and model from paint left at the scene of an accident, to

predicting the trees that will be chewed by elephants (Lister et al., 1997; Sollinger and Voges, 1997;

Cassis et al., 1998; Heise et al., 1998).  Further examples of NIRS applications are given in table 1 and

broadly-based spectroscopy texts (e.g., Clark, 1991; Duckworth, 1998; Workman and Springstein,

1998).

• Estimation of a biochemical/chemical
Salt in water; ammonia and propane in air; nitrogen in soil, sheep guts and potatoes;

sugar/starch in bananas, fruit juice and oranges; nicotine in tobacco and 'foreign

substances' in milk.

• Biochemical assay of
Beer, cereals, rapeseed, flax, goats milk, blood, faeces, silage and compost.

• Differentiation between

Olive oils, kiwi fruit berries, high acid fruits, apple juices, tree pulps, tobaccos, meats,

plastics and crude oils.

Table 1 A selection of near infrared spectroscopy (NIRS) applications as reported in the Journal of

Near Infrared Spectroscopy volumes 1 (1993) to 8 (2000) inclusive.  (Source:

http://www.nirpublications.com)

Some of the techniques and applications of NIRS are made possible by the large signal-to-noise ratio

of laboratory spectrometers and the homogeneity of the samples.  However, there are three areas of

NIRS that have an immediate relevance here.  The first is the biochemical assay of leaves (Thygesen,

http://www.nirpublications.com)/


1994; Hallett et al., 1997; Méthy et al., 1998), where laboratory-based spectra of leaves have been used

both for the estimation of key foliar biochemicals, such as a nitrogen (Aber et al., 1994; Newman et al.,

1994) and for the development of methods relevant to remote sensing (Card et al., 1988; Curran et al.,

1992; Peñuelas et al., 1995; Gitelson and Merzlyak, 1997; Ponzoni and Gonçalves, 1999).

The second is the formulation of theory (Wonzy et al., 2000) and the development of techniques

(Berzaghi et al., 2000) for spectral analysis.  Many NIRS techniques can be transferred with little

modification to the analysis of remotely sensed spectra, whether it be for  calibration (Sinnaeve et al.,

1994), variable selection (Westad and Martens, 2000), mixture modelling (Hlavka et al., 1997) or some

aspect of regression analysis (Montalvo et al., 1994).

The third is the development of NIRS as part of the field of chemometrics (Otto, 1999; Kayes et al.,

2000).  The interface between NIRS and issues such as signal processing, artificial intelligence, spectral

databases and genetic algorithms provides an area of particular interest for a remote sensing audience

(Morgan, 1991; Geladi and Dåbakk, 1995; Massart et al., 1998).  The most fertile of these is probably

the use of neural networks to train spectral classifiers (Hana et al., 1997; Dawson et al., 1998b).

However, a note of caution:

'Even though NIR began as a classical spectroscopy, its growth was marked by pragmatism.

That is its characteristics or effects were observed and exploited long before we ever truely

understood why it really worked'  (McClure et al., 1991, p. 14A).

NIRS will continue to be a valuable source of techniques for ecological remote sensing but to

understand the processes involved we will undoubtedly need to return to first principles and leaf and

canopy reflectance models (Ustin et al., 1999).

4 DEVELOPMENTS INSIDE REMOTE SENSING: AN EXAMPLE FROM
GEOLOGICAL REMOTE SENSING

NIRS techniques based on stepwise regression are robust and effective; however, they are not ideal

due to (i) the risk of overfitting (usually when many more wavebands than samples are used); (ii) the

selection of  wavelengths that are non-causal (Baret and Fourty, 1997), or are located in the

absorption feature of a biochemical to which the biochemical of interest is correlated (Curran et al.,



1992; Grossman et al., 1996) and the (iii) lack of generally accepted procedures for both data

preprocessing to enhance absorption features and standardisation to minimise the effect of spectral

variability that is independent of biochemical concentration.  To overcome at least some of these

problems we need look no further than geological remote sensing (Clark, 1991; Kruse et al., 1993;

Schowengerdt, 1997), in particular the methodologies proposed by Kokaly and Clark (1999) that

benefited from continuum-removal, calculation of band depth and normalisation.  In these methodologies a

continuum was fitted to the reflectance spectra in order to represent absorptions other than the one

of interest (Clark and Roush, 1984).  The value associated with a wavelength was then expressed, not

as reflectance or the first derivative of reflectance, but as band depth normalised to the waveband at

the centre of the absorption feature (BNC) or the area of the absorption feature (BNA).

Band depth normalised to band depth at the centre of the absorption feature (BNC)

This measures the depth of the waveband of interest from the continuum line, relative to the depth of

the waveband from the continuum line at the centre of the absorption feature.

BNC = (1-(R/Ri))/(1-(Rc/Ric))

where BNC is band depth normalised to the centre; R is reflectance of sample at waveband of

interest; Ri is reflectance of continuum line at waveband of interest; Rc  is reflectance of sample at

absorption feature centre and Ric is reflectance of continuum line at absorption feature centre.

Band depth normalised to area of absorption feature (BNA)

This measures the depth of the waveband of interest from the continuum line, relative to the area of

the absorption feature.

BNA = (1 - (R/Ri))/A)

where BNA is band depth normalised to area and A is area of absorption feature.

These are illustrated for waveband λ in figure 1, where R is 48.9%, Ri is 52.4%, Rc is 41.5% and Ric is

49.5%.  Therefore, band depth is 0.07 relative reflectance at wavelength λ and 0.16 relative reflectance



at the centre of the absorption feature.  Given that the area of the absorption feature (A) is 19.13

relative reflectance nm-1 then for waveband λ  BNC is 0.41 and BNA is 0.004.

Figure 1 Diagrammetric illustration of continuum-removal and band depth calculation for

waveband (λ) in the 2100 nm absorption feature.

Kokaly and Clark (1999) developed and tested their methodologies on a large data set collected as part

of the ACCP.  This comprised laboratory spectra and biochemical assays of three biochemicals

(nitrogen, lignin, cellulose) for seven sites and a total of 744 samples.  They used three absorption



features (centred around 1730 nm, 2100 nm and 2300 nm) and the procedures outlined above.  With

this approach they obtained high values of R2 between spectral data and biochemical concentration (for

example, R2 for nitrogen ranged from 0.75 to 0.94).

These methodologies have been tested independently on a smaller foliar dataset (n=68-70) from one

site but for twelve biochemicals (Curran et al., 2001). Stepwise regression on first derivative spectra

resulted in large R2 (maximum 0.90, average 0.74) and a small root mean square error (RMSE) as a

percentage of the mean (minimum 0.46, average 8.24) between estimated and observed foliar

biochemical concentrations. Stepwise regression on bands normalised to band depth at the centre of

the absorption feature (BNC) or the area of the absorption feature (BNA) resulted in even larger R2

(maximum 0.94 and 0.96, average 0.80 and 0.84 respectively) and small RMSE as a percentage of the

mean (minimum 0.24 and 0.12, average 6.68 and 4.86 respectively) between estimated and observed

foliar biochemical concentrations.  In this case the most accurate methodology for the estimation of

foliar biochemical concentration is well-known in geological remote sensing (Clark, 1999) and was

stepwise regression normalised to the area of the absorption feature.

The original scientific rationale for imaging spectrometry was geological (Peterson, 2000) and

throughout the 1990s the geological agenda drove many developments in imaging spectrometry (Hill

and Mégier, 1994; Green et al., 1998; Kruse, 1999).  Ecological remote sensing has developed

considerably during this time but can still look with benefit at the leads being taken by those working in

geological remote sensing (Clark, 1999).

5 SUMMARY

We are currently seeing a transition from airborne to spaceborne imaging spectrometry (Curran, 1994;

Denniss, 1999).  This offers opportunities to ecologists who will have a tool capable of determining the

amount of given biochemicals, the degree of environmental pollution, or the rate of biogeochemical

cycling at scales from the local to the global (Curran and Kupiec, 1995; Guyot and Phulpin, 1997).  We

need to pose questions that will capitalise on this technology and these questions need to be not just

"what is the vegetation there?" or "how much vegetation is there?" but "what is the condition of that

vegetation?"  To answer questions of the 'third kind' we will need to be alert to developments outside

and inside remote sensing.  In particular, we will need to take advantage of techniques in NIRS and



geological remote sensing that compliment recent developments image processing and leaf and canopy

modelling.
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