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ABSTRACT

During the past decades, large amounts of diffuse contaminated soil material have
been deposited in the floodplains of the river Rhine. The dynamic character of these
river causes a large spatial variability in the contamination level of its floodplain soils.
As spatial information is required at different scale levels, characterisation
exclusively based on soil sampling and analysis is often insufficient or too expensive.
Hyper-spectral images can provide additional spatial information for a proper
characterisation of the contamination situation of river floodplains. Earlier studies
have investigated the application of imaging spectroscopy for the monitoring of
vegetation stress as indicator for the contamination situation of a field. An alternative
approach would be to determine the contamination level directly from soil reflectance
characteristics. Imaging spectroscopy has already been used for the quantification of
organic matter and clay content in the soil. In river floodplains, these characteristics
are closely related to the elevated metal concentrations in the soil.
This paper describes the possible application of imaging spectroscopy to classify
contaminated areas in river floodplains. Soil reflectance spectra in the visible-near
infrared region (VNIR) were measured in the laboratory for soil samples taken from
two river floodplains along the river Waal, the main tributary of the river Rhine in the
Netherlands. Multivariate calibration techniques, in particular Partial Least Squares
(PLS) regression, were used to test the performance of reflectance spectra in
analysing both soil properties like clay and organic matter content and the level of
metal contamination. Results for the analysis of two river floodplains are summarised
and the influence of scale-level and sub soil material on the prediction capability are
discussed.

1 INTRODUCTION

The spatial variability of diffuse soil contamination (e.g., heavy metals and
polyaromatic hydrocarbons) in river floodplains along the Rhine is very high. Low
pollutant concentrations can be found only a short distance from sites with relatively
high contamination. The coming years, large-scale changes will be made to the
floodplain landscape of the rivers in the Netherlands (e.g., lowering of riverbed and
floodplains, displacement of river dikes and creation of side channels) to prevent
future damage from flooding. Within these projects, spatial information on the soil
quality along the rivers is required for applications like soil sanitation, ecological risk
assessment, and volume estimations for clay and sand extraction. Depending on the
application, this information has to be available at different scale-levels, ranging from
river tributary to the individual floodplain. Under the present Dutch soil-protection



laws, sediment in large parts of the floodplains exceeds the intervention level of the
Dutch soil qualification system, resulting in high removal costs and stagnation of
projects. The recently formulated policy of dynamic soil management for river
floodplains (Schouten et al. 2000) offers new possibilities, as pollution levels only
have to be reduced to river-specific background levels instead of to the national
reference values. For this approach, floodplains are divided into homogeneous
pollutant units, i.e., areas with a minimal variation in soil composition and soil quality
(Kooistra et al. 2000). Remote sensing is a promising tool for providing spatial
information to map the soil quality of river floodplains.

An important requirement for a successful application of remote sensing in mapping
contaminated land is a detailed spatial and spectral resolution of the images (Folkard
1998). As the dimensions of the river floodplains are long and narrow, a minimal
spatial resolution of five meter will be required. Furthermore, to detect subtle
reflectance variations that can be attributed to elevated contamination levels, almost
continuous spectral ranges are necessary. Imaging spectroscopy sensors fulfil these
requirements. Within a sensor’s field of view two main components of a river
floodplain can be identified: vegetation and soil. Several studies have already
investigated the application of imaging spectroscopy for the characterisation of
vegetation stress as an indicator for soils contaminated with polyaromatic
hydrocarbons (e.g. Jago et al. 1999, Llewellyn et al. 2000) or metals (e.g. Sommer et
al. 1998). These results show that under a homogeneous vegetation cover, e.g.
grassland, contamination patterns can be classified. Since large parts of the river
floodplains are regularly flooded, resulting in large areas of bare soil material, an
alternative approach would be to determine the contamination level directly from soil
reflectance characteristics. Until now mapping soil characteristics through imaging
spectroscopy has mainly focused on mineral deposits (e.g. Crosta et al. 1998) and
organic matter content (e.g. Palacios-Orueta et al. 1999).

Laboratory studies have already shown successful application of soil reflectance in
the visible-near infrared (VNIR) region for predicting soil characteristics like organic
matter content (e.g. Ben-Dor et al. 1997, Morra et al. 1991, Henderson et al. 1989)
and clay content (Ben-Dor and Banin 1995). In river floodplains, these soil
characteristics are directly correlated to elevated metal concentrations in the soil
(Middelkoop 1997). Although metals at low concentration levels do not have spectral
features within the VNIR region, via intercorrelation with soil properties that are
spectrally active in this region, predictions for the featureless soil constituents can be
made (Ben-Dor and Banin 1995). The objective of this study is to investigate the
possibilities of predicting  metal contamination levels in river floodplains from high
resolution reflectance spectra based on laboratory measurements of soil samples
and multivariate regression.

2 METHODS

2.1 Soil Sampling

Soil reflectance characteristics were investigated in two river floodplains: the
Afferdensche and Deestsche Waarden (ADW) and the Millingerwaard (MILW)
(Figure 1). Both floodplains are located along the river Waal, the main tributary of the
river Rhine in the Netherlands. A total of 69 soil samples were taken in the two
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Figure 1. Location of the two floodplains along the river Waal

floodplains. In the ADW, a total of 31 sampling points distributed evenly over the
floodplain were visited, and 44 soil samples were taken. For all locations the top soil
(0-10 cm) was sampled. For a selection of 13 sampling points also soil material from
the lower horizons and/or recently deposited soil material was sampled. Subsoil
horizons were taken into account, because after reconstruction of the floodplains,
which includes removing the first meter of the soil, also this soil material will be at the
surface. For the MILW no information from earlier studies was available. For this
floodplain, 25 soil samples were taken at a regular grid of 18 sampling points. Also
for this floodplain, all top horizons were sampled with 8 additional samples from
lower or recently deposited soil horizons. For the samples of the top horizons, three
scoops within 1 square meter were taken. For the lower horizons, 10 cm cores were
taken from the auger and used as sample material. Each sample was split into two
subsamples. One was used for spectroscopic measurements, the other analysed to
characterise soil chemical properties.

2.2 Chemical Analysis

The organic matter content for the soil samples was obtained by a loss-on-ignition
method (Houba et al. 1989) and the clay content was determined with the laser
diffraction method (Buurman et al. 1997). For the determination of the total metal
concentration, approximately 20 g of field moist soil material was dried at 105 °C for
24 hours. Soils were grounded with a mortar and particles larger than 2 mm were
removed by sieving. Dried soil samples (1 g) were treated with a HNO3/H2O2 solution
in Teflon-lined bombs using the microwave digestion method; after mineralisation,
total cadmium (Cd) was measured by means of graphite furnace atomic absorption
spectrometry (AAS) and total zinc (Zn) by ICP-AES spectrometry. All individual soil
samples were digested in triplicate.



2.3 Spectral measurements

The sample preparation followed the procedure from Henderson et al. (1992). Soil
samples were dried at 40 °C for 24 h to standardise the moisture level. In order to
minimise anisotropic scattering of light by soil aggregates of variable size, soils were
grounded with a mortar and passed through a 2 mm sieve. The absorbance spectra
of the soil samples were obtained by means of a NIRS 6500 spectrophotometer
(NIRSystems, Silver Spring, MD), configured with a reflection module and PbS
detectors. The spectra were measured between 400 and 2500 nm, at 2 nm
increments (1050 variables), using a resolution of about 10 nm bandwidth. The
spectra were corrected for background absorption by division of a reference
spectrum of Spectralon® 99% (Labsphere inc.), and the final spectrum is an average
based on 32 scans.

2.4 Modelling

The partial least squares (PLS) regression method (Geladi and Kowalski 1986,
Massart et al. 1997) was used to establish relations between the spectra and
measured soil variables. It is based on latent variable decomposition of two blocks of
variables, matrices X and Y, which contain spectral data and soil characteristics
respectively. The purpose of the method is to find a small number of latent factors
that are predictive for Y and use X efficiently. For the calculation of the regression
models, the spectral response was expressed in absorbance values. All calculations
were written in MatlabTM. Some standard techniques were taken from the
PLS_Toolbox for MatlabTM.

Because a limited number of samples was available, a leave-one-out validation
procedure was adopted to verify the prediction capability of the method. At each
time, from all n samples within the dataset, n – 1 were utilised to build the regression
model. Based on this model, the value for the soil property of the sample not used in
developing the model was predicted. This procedure was repeated for all n samples,
resulting in predictions for all samples. The parameter used to evaluate the quality of
the results was the root mean square error of prediction (RMSEP) given by

n

yy pm∑ −
=

2)(
RMSEP (1)

where ym is the measured value for a soil parameter and yp is the value predicted by
the PLS model.

3 RESULTS AND DISCUSSION

The results for the chemical analysis of the soil samples from the two floodplains are
given in the box plots of Figure 2. It is apparent that the samples from the ADW
floodplain have both a higher clay content and organic matter content compared to
the samples of the MILW floodplain. Both the median value and the ranges of the
distribution are higher for the samples of the ADW floodplain. In contrast, the box
plots for the Cd and Zn concentration of the two floodplains show comparable
distribution ranges. For the ADW floodplain, a higher median value for the two metal
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Figure 2. Box plots of clay and organic matter content and metal concentrations for
the Afferdensche and Deestsche Waarden (ADW) and Millingerwaard (MILW). The
ends of the box correspond to the first and third quartile of the distribution and the
median is represented by the horizontal bar. The most remote, non extreme values
are pictured with a small horizontal line under and above the box. Extreme, outlying

observations are indicated with circles.

concentrations is observed. The box plots indicate that both the Cd and Zn
concentration are characterised by a skewed distribution. Also the distributions for
the clay and organic matter content in the MILW show this tendency; for the ADW a
symmetric distribution is observed. Based on all 69 samples, variations of the
organic matter content were positively correlated with the Cd concentration (r=0.74,
p<0.01) and the Zn concentration (r=0.74, p<0.01). For the clay content, moderate
correlations were found with Cd (r=0.43, p<0.01) and Zn (r=0.46, p<0.01). These
results confirm earlier observations by Middelkoop (1997) that the amounts of metals
contained in a sediment body depend on the exchange capacity of the sediment
particles, which is largely determined by the contents of clay and organic matter.

The outliers in the ADW floodplain for the Cd and Zn concentration, depicted by the
circles above the box plot (Figure 2), are all from subsoil samples. As older and
deeper sediment layers were deposited during periods with a higher diffuse
contamination load from the upstream river basin, they will have a different
correlation with the clay and organic matter content. These a-typical observations, or
outliers, may decrease the prediction accuracy of the regression model. To
investigate both the influence of subsoil samples and the scale-level on the
prediction accuracy, PLS models were calculated for three datasets. The first set
consisted of all 69 samples taken from the two floodplains, representing the scale-
level of the Waal tributary including both top and subsoil samples. The second set
only included the 49 topsoil samples from the two floodplains. With this set the



influence of the subsoil samples on the prediction accuracy was investigated. The
third set consisted of the 31 topsoil samples from the ADW floodplain, representing
the scale-level of the individual floodplain.

Figure 3 shows the cross-validation RMSEP results of the PLS models for the three
datasets of the four soil characteristics. On the x-as the number of latent factors are
given that are used for constructing the PLS model. For the final model one wants to
use a small number of factors that gives a minimal RMSEP. Including too many
factors often leads to a deterioration in prediction ability (overfitting). The plots for
clay and organic matter content show that exclusion of the subsoil samples does not
improve the prediction capability of the model. For the clay content, the RMSEP
values at the floodplain scale-level are even higher compared to the tributary scale-
level including subsoil material. The three PLS models for the organic matter content
show comparable RMSEP curves. This means that for this variable robust models
can be made which are valid at different scale-levels. The plots of the metal
concentrations show that removal of subsoil samples significantly improves the
prediction capability of the PLS model. Differences between the RMSEP curves at
the two scale-levels are relatively small, although for both the Cd and Zn
concentration the RMSEP values tend to be smaller for the individual ADW
floodplain.
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Figure 3. Root mean square error of prediction (RMSEP) for the soil characteristics
against the number of PLS factors for all 69 soil samples, the 49 topsoil samples of
the ADW and MILW floodplain, and the 31 topsoil samples of the ADW floodplain.



All samples (n=69) Topsoil ADW and MILW (n=49) Topsoil ADW (n=31)
PLS factors rel. RMSEP PLS factors rel. RMSEP PLS factors rel. RMSEP

Clay 3 0.2632 3 0.2609 2 0.3267
OM 4 0.2790 4 0.2503 4 0.2191
Cd 3 0.4564 5 0.3706 3 0.3778
Zn 4 0.3684 4 0.2399 4 0.2242

Table 1. Prediction results of the PLS models

The criteria of lowest RMSEP and an optimal number of PLS-factors were used to
calculate PLS models for the three datasets of Figure 3. The location of the minimum
RMSEP is not always well defined (Massart et al. 1997). For example, the PLS
model of the Zn concentration for all topsoil samples (Figure 3) has its minimum at 6
factors (RMSEP = 75.5 mg/kg). But when the minimum is very shallow, one might
trade in a few factors for a simpler, and probably more robust, model with the same
prediction error (4 factors and RMSEP = 79.4 mg/kg). Results for the four soil
characteristics are summarised in Table 1. In order to be able to compare
differences between datasets, relative RMSEP values for a soil property were
calculated as the RMSEP corresponding to the optimal number of PLS-factors
divided by the mean value of the soil property in a given dataset. For all cases, the
expected prediction error as estimated by the relative RMSEP is significantly smaller
than half the mean value of the soil parameter of interest. Figure 4 shows the plots of
the predicted vs. measured value for the total dataset of the four examined soil
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Figure 4. Plots of measured soil characteristics against the predicted for all 69
samples based on the PLS models of Table 1.



properties. The number of PLS factors used for constructing the models are given in
Table 1. Also shown are the RMSEP and linear correlation coefficient of the model in
each plot. For both the soil characteristics and the metal concentrations the points
fall in the vicinity of the 1:1 line with a few outliers. The two points with the highest
measured Zn concentrations can be seen in Figure 2 as well, an correspond to
subsoil samples.

The required prediction accuracy will depend on the objective of a specific
application. For example, in the Netherlands contaminated soil material from river
floodplains is divided into four soil quality classes. Based on the ranges of these
classes, satisfactory predictions can be made for the Zn contamination level. For the
Cd concentration, predictions for the lower classes are less accurate as the ranges
of these classes are relatively narrow, but for samples with higher Cd contamination
levels good results can be achieved. This allows a rapid determination of the relative
contamination level for a large number of samples in the laboratory.

Further improvement of the prediction capability could be achieved by pretreatment
of the spectral data (e.g., linearization, smoothing, feature selection) to correct for
baseline deviations, light scattering and lack of reproducibility in data acquisition
(Masserschmidt et al. 1999). For example, using the first derivative of the
reflectance improved the prediction results for the clay content significantly. This is
especially the case when the method is applied to data collected directly in the field
or with remote sensing instruments. In those situations results are affected by the
effects of natural soil surface conditions (e.g., roughness, moisture, stoniness, etc.),
the influences of the atmosphere and the illumination conditions (Leone and Sommer
2000). These influences will be further studied on the basis of spectral data collected
directly in the field.

4 CONCLUSIONS

This study showed that high resolution spectra of soil samples taken from river
floodplains can be used for predicting elevated metal concentrations of Cd and Zn.
Soil spectroscopy in the VNIR region with a partial least squares (PLS) model is
shown to be a very promising method for the determination of both soil properties
and metal concentrations in floodplain soils. The results obtained when comparing
PLS models of three datasets differing in spatial variability showed that the samples
taken from deeper and older sediment layers have a large influence on the prediction
accuracy for metal concentration. The influence of the scale-level was of less
importance. The results from this laboratory study indicate the potential of using
remote sensing images for the classification of contaminated areas in river
floodplains. To understand the variability of soil contamination in the floodplain
landscape more completely, it will be informative to analyse an extended dataset
more completely in a geographic context. This can be achieved by using a relational
GIS database, where other types of information such as vegetation and
geomorphology are also included. Apart from remote sensing applications, this
method also allows a rapid determination of metal concentrations for a large number
of samples in the laboratory.
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