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ABSTRACT

The difficulty of the remote sensing of coastal water is the presence of more than one
constituent with high variability ranges, different correlation and spectral behavior. The
constituents are superimposing in their influence on the resulting total spectrum.  For the
improvement of remote sensing of coastal zones it is not only necessary to built a new
generation of sensors that offer spectrally higher resolved data, but one has also to
develop a new methodology that allows the separation and determination of the water
constituents based on the entire spectral signature of the different components of the
water body. The imaging spectrometer MOS flying on the Indian remote sensing satellite
IRS-P3 provides since March 1996 remote sensing data for the scientific community. In
the paper the instrument and mission will be introduced. A new methodological approach
was implemented to derive different case II water constituents as well as atmospheric
turbidity for the application of MOS-data in coastal regions. A new point of the method is
the uniform consideration of atmospheric and water related contribution to the remote
sensing signal.

1. INTRODUCTION

If remote sensing of the earth's environment wants to contribute to the actual challenges of
ecosystem research it has to move towards quantitative estimation of geophysical
parameters of different objects and different scales. For coastal water this means the
distinction between different classes of water constituents. Case 2 waters, typically found
in coastal zones and river plumes, are characterized by higher chlorophyll concentrations
and significant concentrations of inorganic suspended matter (sediments) and dissolved
organic matter (gelbstoff). The task of remote sensing now is to use the different optical
influences of the water constituents on the light spectrum to investigate and map the
different constituents of the water body quantitatively. The advantage of the use of remote
sensing technique is to get regularly data from large areas, which would be nearly
impossible with in-situ ship measurements. The problem contains two sides. On the one
side one must have the necessary measurement technology (e.g. imaging spectrometers
with high spectral and radiometric resolution), on the other side an appropriate
interpretation technology must be provided. The classical approach (CZCS, SeaWifs) with
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atmospheric correction using one near-infrared band and color ratios from two or three
bands for estimating chlorophyll concentration is no more possible because of the complex
situation in case 2 waters. The paper will introduce both a multispectral imaging
spectrometer (the Modular Optical Scanner, MOS) and a new method for interpreting the
satellite data for case 2 waters (the Principal Component Inversion, PCI). The PCI is a
multivariate regression technique basing on model inversion, which uses principal
component analysis as an information extraction tool, for the interpretation of the
atmosphere-ocean measurements. A new aspect of the algorithm is that a special
atmospheric correction procedure is not more necessary. The consideration of
atmospheric influence is implicitly included, equally with the water parameters.

2. THE MOS INSTRUMENT AND MISSION

The sensorics for remote sensing of ecosystems by plane or satellite has been
dynamically developed in the last years. For this purposes in the DLR was develloped the
MOS system [Zimmermann 1996, Neumann 1995]. MOS was especially designed for
remote sensing of the ocean-atmosphere system. It will be used on the Indian remote
sensing satellite IRS-P3, which was successfully launched on March 21, 1996. In table 1
the main technical parameters of the MOS devices are listed. MOS consists of two
spectrometers (MOS-A and MOS-B) and a CCD line camera (MOS-C) with medium spatial
resolution and high radiometric precision. The MOS devices A and B are working by the
principle of imaging spectrometer. The advantages of remote sensing experiments basing
on this principle are:

•  the high number of spectral channels

•  the high spectral resolution of each channel

•  the geometric identity of the spectral images.
The atmospheric spectrometer MOS-A measures in four channels in the oxygen
absorption band (O2-A) at 760 nm. These measurements allow estimations of the
atmospheric turbidity and the proof of stratospheric aerosols. The simultaneous measuring
bio-spectrometer MOS-B is working in 13 spectral channels with a bandwidth of 10 nm in
the visible (VIS) and in the near infrared (NIR) spectral range from 408 to 1010 nm for the
investigation of ocean color. The MOS-C allows an additional investigation of the surface
roughness of the ocean and the differentiation of cloud types.
The wavelengths of the spectral channels of MOS-B were chosen in opportunity of the
spectral characteristics of the water constituents, to have the possibility to get quantitative
definitions of concentrations. Here is the main effort in the development of algorithms for
coastal zones, where the large number of spectral channels in the MOS is the assumption
for the quantification of parameters concentrations Otherwise there can be defined
vegetation signatures („red edge“) and the atmospheric content of water vapor from
absorption-measurements in the NIR.
The mission IRS-P3 is a common Indian-German experimental mission in the field of earth
remote sensing. IRS-P3 is an abbreviation of Indian Remote Sensing Satellite, Polar
launcher No 3. This satellite was launched on March, the 21, 1996 with the third test
launch of an Indian rocket PSLV (Polar Satellite Launch Vehicle). The rocket, the bus and
the launch facilities were putted at disposal by the ISRO (Indian Space Research



Organization), the DLR takes part in the scientific payload with the imaging spectrometer
MOS. The payload consists of three devices :

•  the Wide Field Sensor WiFS from the ISRO

•  the  Modular  Optoelectronical  Scanner  MOS  from the Institute of Space Sensor
Technology of the DLR

•  an X-Ray-experiment for radioastronomy from the ISRO.
The mission serves scientifically-technological and methodological experiments. Because
of the pre-operational character of the mission there does not exist an on-board storage
for the data. The receive is only real time possible over interesting areas in the radar view
of ground stations. The control of the payload is performed by the control station in
Hyderabad. The German Space Operations Center GSOC of the DLR works as a backup
station and control center for the European receiving area.

Parameter MOS-A MOS-B MOS-C
Spectral Range [nm] 755 – 768 408 – 1010 SWIR
No. of Channels 4 13 1
Wavelengths [nm] 756.7; 760.6; 763.5;

766.4
O2A-band

408; 443; 485; 520; 570;
615; 650; 685; 750; 870;
1010
815; 945 (H2O-vapor)

1600

Spectral halfwidth [nm] 1.4 10 100
FOV along track x [deg]

Across track [deg]
0.344
13.6

0.094
14.0

0.14
13.4

Swath Width [km] 195 200 192
No. of Pixels 140 384 299
Pixel Size x*y [km2] 1.57x1.4 0.52x0.52 0.52x0.6

4
table 1 Modular Optical Scanner MOS-IRS

3. THE CASE 2 PROBLEM

In developing case 2 interpretation algorithms the main problem is to formulate the
relationship between the spectrum of water leaving radiances and the corresponding
concentrations of water constituents using as much spectral bands as available. This is
nearly impossible to do on an empirical basis. Radiative transfer modeling is therefore the
tool that can be used to solve the problem. This also has the advantage that an analytical
approach can be developed. On the other hand the direct inversion of the problem
mathematically is very complicated. Therefore indirect solutions and approximations have
to be used. One possible way is the inverse modeling technique developed by Doerffer et.
al. [Doerffer 1993, 1997]. This inversion technique is very consumptive with respect to
computing power and convergence problems may occur. Due to that a simplification and a
more straight forward computing strategy is needed, what lead to the neural network
approach
A different approach was developed first for the MOS instrument by Krawczyk et. al.
[Krawczyk 1993, 1995, Neumann 1995a] and forms the basis for the algorithms
considered here. The main question is to systematically determine the weighted
contribution of each available spectral band to the estimate of the desired geophysical



parameter, i.e. chlorophyll, gelbstoff and sediments. The idea is to derive a simple to
realize relationship between the radiance spectra and the geophysical values based on
radiative transfer modeling and information-theory analysis of the signal’s multivariate
statistics. Signal-to-Noise ratio and radiometric resolution of the measurements are
accounted for their influence on the estimation accuracy during algorithm development.
The analysis of the spectral and statistical information content of the MERIS data is done
by principal component analysis (PCA) of well-defined simulated data sets. Through the
applied specific optical model of the water body the inverse algorithm can be tuned or
optimized for regional and seasonal specifics. The entire procedure of PCA and deriving
the inverse estimation formulas is called Principal Component Inversion (PCI). In the result
a computationally fast and robust technique for retrieving water constituents from remotely
sensed data under case 2 conditions is available.

The physical background determining the spectral signature of the remitted light from the
water body are scattering and absorption processes caused by the water constituents and
the water itself. For case 2 waters always two or more components are influencing the
spectrum. For the following investigations of the case 2 water problem we are
concentrating onto three main classes of constituents: Phytoplankton containing the
chlorophyll (scattering and absorption), Gelbstoff or dissolved organic matter DOM
(absorption) and suspended inorganic material or sediments (scattering). Figure 1
illustrates quantitatively the influence of these components on the reflectance spectrum.
Due to the nearly total absorption of light by the pure water below 400 nm and above 700
nm only this limited range allows to assess water constituents. One clearly sees that no
part of the spectrum can be related to the influence of one component only. In practice
different mixtures and covariations of the constituents may occur for wide ranges of
variability of each component making the inversion even more complicated. Especially in
coastal regions and river estuaries high concentrations of suspended matter may mask the
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Figure 1: Influence of water constituents on reflectance spectra



influence of other constituents. This leads to limits for the discriminability and retrievability
of different water constituents. However, the decomposition of the components is possible
in many of the cases of coastal water if:
� a sufficient number of spectral bands are available in the instrument (number of bands

is large compared to the number of parameters to be estimated)

� sufficient spectral coverage (VIS → NIR)
� a specific biooptical model based on inherent optical properties (IOPs) and/or

experimental data is available
In a more general sense this described situation for case 2 waters obviously causes
limitations for the applicability of the “classical” color ratio algorithms since they are not
able to separate the single components and may be heavily influenced by the cross-
correlation between them. Thus multiband or even hyperspectral retrieval algorithms are
needed. Although, of course, the signals in different spectral band will not be uncorrelated
each band contributes information that allows the distinction and quantification of the
parameters. To build such kind of algorithm is the attempt to assess not only
radiance/reflectance values in the single bands but the shape of the spectral signature as
an additional information.

4. ALGORITHM DESCRIPTION

Since the more complicated state of case 2 water requires the estimation of more then one
water constituents simultaneously each of them influencing the spectral behavior of the
investigated water body in a different manner with additional overlaying and masking
effects, the major goal was to derive an algorithm that implies the following features:

•  estimation of a multiple parameter set p

•  discrimination between parameters

•  simple to implement

•  fast in use for the processing of huge data sets.
As the simplest approach therefore a linear estimation between the measured TOA
satellite radiance data L and the parameter p was chosen.

+=
j

ijiji CLkp̂ (1)

where

= ip̂ - estimate of the geophysical parameter, e.g. pigment, aerosol-optical thickness etc.

= kij - weighting coefficient of channel j for parameter i

= Lj - measured radiance in channel j

= Ci - offset value for parameter pj

= j - measurement channel number, from 1 to N, where N - number of spectral
channels in the instrument.



It is one of the basic ideas of the proposed algorithm to use directly the TOA radiance
values and to account for the atmospheric influence implicitly. The background for this
approach is, that the application of an explicit atmospheric correction does not increase
the information content regarding water constituents: Although the result of atmospheric
scattering is the major effect that one sees in satellite data they contain already all signal
variation caused by the water constituents. In other words, what is not resolved in the TOA
data cannot be seen also after atmospheric correction. The atmospheric correction only
realizes a kind of „dimensionality reduction“ of the data. Thus it should be possible to build
an algorithm that reconstructs water constituents directly from top of atmosphere
measurements. Of course it is up to discussion whether the used here linear estimates are
appropriate to achieve the necessary accuracy. But the general approach could also be
modified for more sophisticated estimators. The entire process of deriving the algorithm
consists of 6 steps.

4.1 Step 1: Modeling

The analysis process requires a data set as input where top-of-the atmosphere (TOA)
radiances in all available spectral channels are combined with the corresponding values of
geophysical parameters that shall be retrieved from the spectral measurements. Such
data sets can be provided either from a large number of remote and field data or from
radiative transfer modeling. For the investigations presented in this document models are
used, since there are insufficient high spectral resolution space data and corresponding
field measurements available. The modeling gives "measured" TOA radiances dependent
on concentrations of different water constituents and atmospheric turbidity. The models
were basically taken from the literature [Gordon 1978 ,Sturm 1981, Sathyendranath, 1989]
and modified to meet the parameters and capabilities of the MOS instrument [Krawczyk,
1993 1995]. The models used are simplified compared to a complete solution of the
radiative transfer equation. This was done to reduce the numerical expense ,to test the
potential of the proposed method.  Although the models influence the derived estimates,
they are not crucial to the general algorithm development. More sophisticated models
have to be chosen for advanced studies. For the calculation the variability range for each
input parameter and the correlation between parameters must be accounted for. This is
done by selecting corresponding spatial patterns (images) of chlorophyll-a, yellow
substance, sediments and atmospheric turbidity that are overlaid as inputs for the
modeling process. For each simulated pixel the corresponding radiance values in the 13
spectral channels of MOS and the values of input parameters are written to a data file
which is then fed into the analysis and inversion process.

4.2 Step 2: Principal Component Analysis

PCA provides a powerful tool for analyzing the information content of high-dimensional
data sets such as spectral high resolution imagery [Ingebritsen 1985, Fischer 1985 ].
However, it is problematical to find a physical interpretation of principal components for
remote sensing applications, since the PCA is primarily a mathematical tool. In the
following the PCA is used to estimate the information content of experimental or modeled
data sets, to rearrange (transform) the data in a manner suitable for analysis and to
separate the useful information from noise contained in the data. Principal components are
computed from the input data sets using the eigenvectors of the spectral covariance
matrix. To account for an interpretation affect through measurement noise, the simulated
radiance data are normalized to unity errors. Expected measurement errors (noise) are



known from laboratory analysis for each MOS channel.  The transformation builds an
orthogonal representation of the original data:

∆

−
=

N

1=m Lm

)LmLm(UkmPCk (2)

where PCk - kth principal component, k from 1 to N
N - number of spectral bands used in the original data set
Uk - kth eigenvector of the covariance matrix
Lm - radiance in the mth spectral band
Lm - mean radiance value in the mth spectral band
∆Lm - noise-equivalent radiance, measurement error.

By properties of the transformation the principal components are uncorrelated and contain
successive degrees of information in the statistical sense, i.e. the higher the order of the
component the smaller its total variance, the more noise or "uninterpretable" information it
contains. This corresponds to the ordering of eigenvalues: λi > λj for i < j.

4.3 Step 3: Intrinsic Dimensionality

First the spectral covariance matrix for the entire set of simulated radiance data is
computed and then diagonalized. The diagonalization is necessary to perform the principal
component analysis. The calculation of covariances is done using error-normalized
radiance values: Cov{Lj/∆Lj} where ∆Lj denotes the noise-equivalent radiance for the jth
spectral band. This normalization automatically accounts for the radiometric resolution of
the instrument considered in the context of algorithm development. The eigenvalues λk
and the eigenvectors Uk of the spectral covariance matrix are then computed. Because of
the error-normalization of radiances for calculating the covariance matrix the eigenvalues
give a direct estimate of the signal-to-noise ratio of the corresponding principal component 
λk = SNR2(PCk) with λk the k-th eigenvalue of the spectral covariance matrix, k from 1 to
N, SNR the signal-to-noise ratio and  PCk  the k-th principal component.
The SNR of each principal component is a measure of its significance in the statistical
sense considering the measurement error. Using the eigenvalues λk one can determine
the intrinsic dimensionality D of the measurement data which is equal to the number of
principal components containing significant information and corresponds to the number of
independent parameters that can (at least theoretically) be retrieved from the spectral
measurement data set: D = max(k) with kλ  >> 1. Two groups of principal components
are separated:

a) those representing significant measurement information (k ≤ D) and
b) those containing non-interpretable variations such as noise, quantization error etc.

For the further analysis and determination of the coefficients in eq. (1) only the significant
principal components are used.

4.4 Step 4: Reverse Correlation

The question is now how the representation of the spectral information in the form of
principal components can be used to derive the desired coefficients. The first point to
consider is that the principal components contain the same information as the original
spectral radiance data, except the small noise-like portion of information that is



suppressed by reducing the number of used components to the "significant" ones. That
again means that it must be possible to reconstruct not only the radiance values from the
principal components which can, in fact be done very easily by the reverse transformation)
but also the input parameters of the modeling [Krawczyk 1995, Neumann 1995a]. Because
of the linear estimate for the determination of the geophysical parameters defined in eq.
(1) a linear estimate is also chosen with the principal components:

PCm
D

1m=
Cim~p̂i (3)

where Cim - correlation coefficients between the ith parameter and the mth principal
component.
Using the principal components and the corresponding geophysical parameters, which can
be taken from the simulated TOA radiance data, one can build a regression formula that
allows it to determine the required correlation coefficients Cim:
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where ip� is the estimate of the parameter p, ip  is the  mean value of the parameter and σi
is the variance of the parameter. This regression must now be performed for each
simulated pixel and each principal component, i.e. for the entire data set. Based on the
results in step 3 only the significant principal components are used for the regression
analysis. This suppresses noise from the data, especially avoiding noise amplification and
significantly reducing the number of computations. It does not reduce the accuracy of the
algorithm, since all of the usable portion of information contained in the data is applied.

4.5 Step 5: Reverse transformation into radiances

Although one can now determine coefficients to estimate geophysical parameters from the
principle components, this is not what is finally needed. Formula (4) cannot be used
directly to interpret any measured scene, since the principal components do not carry a
clear physical sense. They strongly depend on the inherent statistic of the investigated
scene and therefore on the values of the parameters and their correlations.   But there is a
way out: because principal components and radiances are equivalent to reconstruct the
informative part of a scene one can apply transformation (2) to eq (4) and yields a
representation of the regression formula based on the TOA radiance values:
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4.6 Step 6: Determination of coefficients for the linear estimator

From equation (5) one now can compute the coefficients kij and mi used in the linear
estimate for each parameter and each wavelength band.
These six steps have to be performed for different variability ranges of the input
parameters, different models with respect to specific optical properties of the water body
and the atmosphere and different viewing geometries. Thus a look-up-table (LUT) is
generated that contains the coefficients which are used to compute the physical
parameters from actual TOA measurements. Fortunately this LUT can be calculated in the
forefield of the mission. The resulting coefficients are model depending and



nonadequateness of the model causes systematic misinterpretation errors. The theoretical
investigations made in preparation of the MOS mission show the promising potential of the
proposed algorithm, especially regarding the discrimination of different water constituents.
This is only possible because of the high spectral resolution and the large number of
spectral bands provided by the MOS instrument or similar sensors.

5. Algorithm Discussion

The main disadvantage is that the original relation describing the dependence between
geophysical parameters and satellite radiances is nonlinear. Therefore the linear approach
is always an approximation with good accuracy only for limited ranges. From this follows
that it is useful to subdivide the entire value range of geophysical parameters into
subranges and to define for each of them a special interpretation coefficient set k and m
for equation (1). These coefficient sets are then collected in a look-up-table (LUT). For an
interpretation of a concrete data set the appropriate input from the look-up-table must be
chosen through a special estimation procedure. The strategy of use of a look-up-table also
allows the consideration of different water types in different regions, e.g. the specific bio-
optical properties of the water constituents in the Baltic Sea are different from those in the
Mediterranean Sea or the open ocean. The expected concentration values and correlation
between constituents are also varying. The interpretation accuracy therefore can be
improved by generating special LUTs accounting for this. Now another aspect should be
mentioned to avoid some disadvantages of the linear approach caused by the original
nonlinear parameter dependence on radiances. An improvement can be achieved by the
introduction of some auxiliary parameters instead of the original geophysical ones through
a semi-logarithmic set-up.

q = p + α ln p ( α = 0.1 ) (6)
This is a mixture of the linear approach and a clear logarithmic. It was found from
numerical tests that the only logarithmic approach did not significantly improve the
interpretation accuracy. Especially for higher concentrations of Chlorophyll and Sediment
the linear estimate gave better results, in opposite to this for low concentrations the
logarithmic approach was better. The semilogarithmic approach is a compromise: for low
values the logarithmic behavior in (6) dominates but for large values the linear part.
Another advantage of this set-up is that now the definition range of the retrieved
geophysical parameters is always positive. In the clear linear approach results could tend
into negative regions, what on one hand is unphysical, but on the other hand is only a sign
of insufficient accuracy.

5.1 Accuracy consideration

For a theoretical test of the potential of the proposed algorithm there was simulated a test
data set of MOS-radiances varying the following geophysical parameters:
Chlorophyll C from 0 to 20 µg/l
Sediment bS(550nm) from 0 to 10 1/m
Gelbstoff aY(440nm) from 0 to 1   1/m
optical thickness τA(750nm) from 0 to 0.5
in uncorrelated patterns. These parameters then were retrieved with the described
algorithm. The retrieval errors (dp/p) are presented in figure 2. One can se the sharp peak
around zero and a fast decrease to the both flanks.



For all parameters a large amount of data lies within a 30% error boundary (dotted line).
An additional improvement could be achieved subdividing the entire parameter ranges into
several subranges and computing different entries into the estimation coefficient look-up-
table. Through a special segmentation algorithm the optimal coefficient set was chosen for
the interpretation (without use of a-priori simulation knowledge). These results are shown
as solid lines in figure 2.
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6. Application Examples

The introduced algorithm was applied to a number of MOS overflight data representing
different situations regarding the water type and atmospheric situation. The following 2
examples show the usability of the algorithm for a European and an American coastal
water case.
FIGURE 3: The image shows an overpass over the Street of Gibraltar. It demonstrates
impressively how the PCI algorithm applied to TOA radiances is able to discriminate
between the atmospheric and in-water features. Although the atmosphere shows high
dynamics and strtucturing, the water constituent maps are not influenced by this pattern.
FIGURE 4: This overpass over the Pacific coast shows a total different type of water than
we usually observe along the European coasts. Except in the bays it seems to be almost



case-I water showing only chlorophyll variation. But the derived water constituents show
clearly that the used “global case-II” model during generation of coefficients for PCI is also
able to handle this situation.

7. Conclusion

The above explanations show that using spectral high resolution data it is possible to
derive different water constituents even under complicated case-II conditions in coastal
waters. It was also demonstrated that the approach of direct retrieval from top-of-
atmosphere radiance data is feasible. However, this is still only a first step demonstrating
the methodology and a lot of investigation and work has to be done in implementing more
precise models in the process of generating the look up tables of coefficients for the PCI.
This is concerning specific water models (regional and seasonal) as well as radiative
transfer through the atmosphere.
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